Home
Class 12
MATHS
If |(x^2+2x,2x+1,1),(2x+1,x+2,1),(3,3,1)...

If `|(x^2+2x,2x+1,1),(2x+1,x+2,1),(3,3,1)|=(x-1)^(k)` then k =

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \( |(x^2 + 2x, 2x + 1, 1), (2x + 1, x + 2, 1), (3, 3, 1)| = (x - 1)^k \), we will simplify the determinant step by step. ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} x^2 + 2x & 2x + 1 & 1 \\ 2x + 1 & x + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix} \] ### Step 2: Perform row operations We can simplify the determinant using row operations. Let's perform \( R_2 - R_1 \) and \( R_3 - R_1 \): \[ R_2 \rightarrow R_2 - R_1 \quad \text{and} \quad R_3 \rightarrow R_3 - R_1 \] This gives us: \[ D = \begin{vmatrix} x^2 + 2x & 2x + 1 & 1 \\ (2x + 1) - (x^2 + 2x) & (x + 2) - (2x + 1) & 0 \\ 3 - (x^2 + 2x) & 3 - (2x + 1) & 0 \end{vmatrix} \] Calculating the new rows: - For \( R_2 \): - First element: \( 2x + 1 - (x^2 + 2x) = 1 - x^2 \) - Second element: \( x + 2 - (2x + 1) = 1 - x \) - For \( R_3 \): - First element: \( 3 - (x^2 + 2x) = 3 - x^2 - 2x \) - Second element: \( 3 - (2x + 1) = 2 - 2x \) So we have: \[ D = \begin{vmatrix} x^2 + 2x & 2x + 1 & 1 \\ 1 - x^2 & 1 - x & 0 \\ 3 - x^2 - 2x & 2 - 2x & 0 \end{vmatrix} \] ### Step 3: Factor out common terms Notice that the last column has zeros in the second and third rows. We can factor out \( (x - 1) \) from the second row and from the third row: \[ D = (x - 1) \cdot \begin{vmatrix} x^2 + 2x & 2x + 1 \\ 1 - x^2 & 1 - x \\ \end{vmatrix} \] ### Step 4: Calculate the remaining determinant Now we calculate the remaining \( 2 \times 2 \) determinant: \[ D' = \begin{vmatrix} x^2 + 2x & 2x + 1 \\ 1 - x^2 & 1 - x \end{vmatrix} \] Calculating this determinant: \[ D' = (x^2 + 2x)(1 - x) - (2x + 1)(1 - x^2) \] Expanding both terms: 1. First term: \( x^2 + 2x - x^3 - 2x^2 = -x^3 - x^2 + 2x \) 2. Second term: \( 2x + 1 - 2x^3 - 1 = -2x^3 + 2x \) Combining: \[ D' = -x^3 - x^2 + 2x + 2x^3 - 2x = x^3 - x^2 \] ### Step 5: Final determinant expression Thus, we have: \[ D = (x - 1)(x^3 - x^2) = (x - 1)^2 \cdot x(x + 1) \] ### Step 6: Set equal to the original expression Setting this equal to \( (x - 1)^k \): \[ (x - 1)^2 \cdot x(x + 1) = (x - 1)^k \] ### Step 7: Determine the value of k For the equality to hold, we need \( k = 2 \) since the \( x(x + 1) \) term does not contribute to the power of \( (x - 1) \). Thus, the value of \( k \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

" If (3x^(3)-8x^(2)+10)/((x-1)^(4))=(3)/(x-1)+(1)/((x-1)^(2))-(7)/((x-1)^(3))+(k)/((x-1)^(2)) then "k=

Let f(x) = {((x^(2) -2x -3)/(x + 1)","," when " x != -1),(" k,"," when " x = -1):} If f(x) is continuous at x = -1 then k = ?

If int_0^(1/2)(x^2)/(1-x^2)^(3/2)dx=k/6 , then k=

When x ^(100) is divided by x ^(2) -3x +2, the remainder is (2 ^(k +1) -1) x -2 (2 ^(k)-1), then k =

int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k _(1)) ( sqrt(1-9x ^(2))+ (cos ^(-1) 3x )^(k_(2)))+c, then k _(1) ^(2)+k_(2)^(2)= (where C is an arbitrary constnat. )

If the coefficient of x^(n) in (x+1)/((x-1)^(2)(x-2)) is K-2n-(3)/(2^(n+1)), then K=

If f(x) = {(2x+1,",",x le 1),(-3-kx^(2),",",x gt 1):} is continuous at x = 1, then the value of k is

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If |(x^2+2x,2x+1,1),(2x+1,x+2,1),(3,3,1)|=(x-1)^(k) then k =

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |