Home
Class 12
MATHS
The value of theta lying between theta =...

The value of `theta` lying between `theta =0 and pi//2` and satisfying the equation `|(1+sin^2theta,cos^2theta,4sin4theta),(sin^2theta,1+cos^2theta,4sin4theta),(sin^2theta,cos^2theta,1+4sin4theta)|=0` are

A

`7pi//24`

B

`5pi//24`

C

`11pi//24`

D

`pi//24`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \theta \) in the interval \( (0, \frac{\pi}{2}) \) that satisfy the determinant equation: \[ \left| \begin{array}{ccc} 1 + \sin^2 \theta & \cos^2 \theta & 4 \sin 4\theta \\ \sin^2 \theta & 1 + \cos^2 \theta & 4 \sin 4\theta \\ \sin^2 \theta & \cos^2 \theta & 1 + 4 \sin 4\theta \end{array} \right| = 0 \] ### Step 1: Simplify the Determinant We can perform column operations to simplify the determinant. Let's add the first column to the second column: \[ C_2 \rightarrow C_2 + C_1 \] This gives us: \[ \left| \begin{array}{ccc} 1 + \sin^2 \theta & 1 + \cos^2 \theta & 4 \sin 4\theta \\ \sin^2 \theta & 1 + \cos^2 \theta & 4 \sin 4\theta \\ \sin^2 \theta & \cos^2 \theta & 1 + 4 \sin 4\theta \end{array} \right| \] ### Step 2: Further Simplification Notice that \( \sin^2 \theta + \cos^2 \theta = 1 \). Therefore, we can rewrite the determinant as: \[ \left| \begin{array}{ccc} 1 + \sin^2 \theta & 1 & 4 \sin 4\theta \\ \sin^2 \theta & 1 & 4 \sin 4\theta \\ \sin^2 \theta & \cos^2 \theta & 1 + 4 \sin 4\theta \end{array} \right| \] ### Step 3: Row Operations Now, let's perform row operations. Subtract the first row from the second row: \[ R_2 \rightarrow R_2 - R_1 \] This gives us: \[ \left| \begin{array}{ccc} 1 + \sin^2 \theta & 1 & 4 \sin 4\theta \\ \sin^2 \theta - (1 + \sin^2 \theta) & 0 & 0 \\ \sin^2 \theta & \cos^2 \theta & 1 + 4 \sin 4\theta \end{array} \right| \] This simplifies to: \[ \left| \begin{array}{ccc} 1 + \sin^2 \theta & 1 & 4 \sin 4\theta \\ -\cos^2 \theta & 0 & 0 \\ \sin^2 \theta & \cos^2 \theta & 1 + 4 \sin 4\theta \end{array} \right| \] ### Step 4: Expand the Determinant Now, we can expand the determinant. The second column has a zero, which simplifies our calculations: \[ = 0 \cdot \text{(some determinant)} - 4 \sin 4\theta \cdot \left| \begin{array}{cc} -\cos^2 \theta & 0 \\ \sin^2 \theta & \cos^2 \theta \end{array} \right| \] Calculating the 2x2 determinant: \[ = -\cos^2 \theta \cdot 0 - 0 \cdot \sin^2 \theta = 0 \] ### Step 5: Solve for \( \theta \) The determinant simplifies to: \[ 4 \sin 4\theta \cdot \cos^2 \theta = 0 \] This gives us two cases: 1. \( \sin 4\theta = 0 \) 2. \( \cos^2 \theta = 0 \) **Case 1: \( \sin 4\theta = 0 \)** This implies: \[ 4\theta = n\pi \quad \text{for } n \in \mathbb{Z} \] Thus, \[ \theta = \frac{n\pi}{4} \] In the interval \( (0, \frac{\pi}{2}) \), the valid values of \( n \) are 1 and 2, giving: \[ \theta = \frac{\pi}{4} \quad \text{and} \quad \theta = \frac{\pi}{2} \] **Case 2: \( \cos^2 \theta = 0 \)** This implies: \[ \cos \theta = 0 \implies \theta = \frac{\pi}{2} \] ### Final Values Thus, the values of \( \theta \) in the interval \( (0, \frac{\pi}{2}) \) that satisfy the determinant equation are: \[ \theta = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The value of theta lying between 0 and pi/2 and satisfying the equation |[1+sin^2theta,cos^2theta,4sin4theta] , [sin^2theta,1+cos^2theta,4sin4theta] , [sin^2theta,cos^2theta,1+4sin4theta]|=0 (A) (7pi)/24 or (11pi)/24 (B) (5pi)/24 (C) pi/24 (D) none

The value of theta lying between 0 and pi/2 and satisfying the equation |(1+cos^2theta, sin^2theta, 4sin4theta),(cos^2theta, 1+sin^2theta, 4sin4theta),(cos^2theta, sin^2theta, 1+4sin4theta)|=0 is (are) (A) (7pi)/24 (B) (3pi)/8 (C) (11pi)/24 (D) (7pi)/12

Number of values of theta lying between theta=0 and theta=pi satisfying the equation |(1 +sin^2 theta,cos^2 theta,4 sin 6 theta),(sin^2 theta,1+cos^2 theta,4 sin 6 theta),(sin ^2 theta,cos^2 theta,1+4sin 6 theta)|=0 is

The value of theta lying between theta=0 and theta=(pi)/(2) and satisfying the equation |1+sin^(2)theta,cos^(2)theta,4sin4 thetasin^(2)theta,1+cos^(2)theta,4sin4 thetasin^(2)theta,cos^(2)theta,1+4sin4 theta]|=0

The value of theta lying between 0 and (pi)/(2), and satisfying ,,1+sin^(2)theta,cos^(2)theta,4sin4 thetasin^(2)theta,1+cos^(2)theta,4sin4 thetasin^(2)theta,cos^(2)theta,1+4sin4 theta]|=0

The value of theta , lying between theta =0 and theta=(pi)/(2) and satisfying the equation . |{:(1+ cos^(2 ) theta , sin^(2) theta , 4 sin 4 theta ),(cos^(2) theta , 1+sin^2 theta , 4 sin 4 theta ),(cos^(2) theta , sin^(2) theta , 1+ 4 sin 4 theta ):}|=0 , is

sin^2theta+cos^4theta=cos^2theta+sin^4theta

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. The value of theta lying between theta =0 and pi//2 and satisfying the...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |