Home
Class 12
MATHS
The value of the determinant |(sinthet...

The value of the determinant
`|(sintheta,costheta,sin2theta),(sin(theta+(2pi)/3),cos(theta+(2pi)/3),sin(2theta+(4pi)/3)),(sin(theta-(2pi)/3),cos(theta-(2pi)/3),sin(2theta-(4pi)/3))|` is

A

`sin theta`

B

`cos theta`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} \sin \theta & \cos \theta & \sin 2\theta \\ \sin\left(\theta + \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) & \sin\left(2\theta + \frac{4\pi}{3}\right) \\ \sin\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta - \frac{2\pi}{3}\right) & \sin\left(2\theta - \frac{4\pi}{3}\right) \end{vmatrix} \] we can use properties of determinants and trigonometric identities. ### Step 1: Use properties of determinants We can perform row operations on the determinant. Specifically, we will add the second row and the third row together and replace the third row with the result. \[ R_3 \to R_2 + R_3 \] This gives us the new determinant: \[ D = \begin{vmatrix} \sin \theta & \cos \theta & \sin 2\theta \\ \sin\left(\theta + \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) & \sin\left(2\theta + \frac{4\pi}{3}\right) \\ \sin\left(\theta + \frac{2\pi}{3}\right) + \sin\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) + \cos\left(\theta - \frac{2\pi}{3}\right) & \sin\left(2\theta + \frac{4\pi}{3}\right) + \sin\left(2\theta - \frac{4\pi}{3}\right) \end{vmatrix} \] ### Step 2: Simplify using trigonometric identities Using the identities for sine and cosine: 1. \(\sin a + \sin b = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right)\) 2. \(\cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right)\) We can simplify the elements of the new third row: - For sine: \[ \sin\left(\theta + \frac{2\pi}{3}\right) + \sin\left(\theta - \frac{2\pi}{3}\right) = 2 \sin\left(\theta\right) \cos\left(\frac{2\pi}{3}\right) = -\sin\theta \] - For cosine: \[ \cos\left(\theta + \frac{2\pi}{3}\right) + \cos\left(\theta - \frac{2\pi}{3}\right) = 2 \cos\left(\theta\right) \cos\left(\frac{2\pi}{3}\right) = -\cos\theta \] - For sine (again): \[ \sin\left(2\theta + \frac{4\pi}{3}\right) + \sin\left(2\theta - \frac{4\pi}{3}\right) = 2 \sin\left(2\theta\right) \cos\left(\frac{4\pi}{3}\right) = -\sin 2\theta \] ### Step 3: Substitute back into the determinant Now substituting these back into the determinant: \[ D = \begin{vmatrix} \sin \theta & \cos \theta & \sin 2\theta \\ \sin\left(\theta + \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) & \sin\left(2\theta + \frac{4\pi}{3}\right) \\ -\sin \theta & -\cos \theta & -\sin 2\theta \end{vmatrix} \] ### Step 4: Factor out -1 from the third row Factoring out -1 from the third row gives: \[ D = -1 \cdot \begin{vmatrix} \sin \theta & \cos \theta & \sin 2\theta \\ \sin\left(\theta + \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) & \sin\left(2\theta + \frac{4\pi}{3}\right) \\ \sin \theta & \cos \theta & \sin 2\theta \end{vmatrix} \] ### Step 5: Notice that two rows are identical Since the third row is now identical to the first row, the determinant evaluates to zero: \[ D = 0 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |sin theta,cos theta,sin2 thetasin(theta+(2 pi)/(3)),cos(theta+(2 pi)/(3)),sin(2 theta+(4 pi)/(3))sin(theta-(2 pi)/(3)),cos(theta-(2 pi)/(3)),sin(2 theta-(4 pi)/(3))

Prove that all values of theta: |(sintheta, costheta, sin2theta),(sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin (2theta+(4pi)/3)),(sin (theta- (2pi)/3), cos (theta- (2pi)/3), sin (2theta- (4pi)/3))|=0

Prove that: 4sin theta sin(theta+(pi)/(3))sin(theta+(2 pi)/(3))=sin3 theta

The volume of the parallelepiped whose coterminous edges are represented by the vectors 2vecb xx vecc, 3vecc xx veca and 4veca xx vecb where veca=(1+sintheta)hati+costhetahatj+sin2thetahatk , vecb=sin(theta+(2pi)/(3))hati+cos(theta+(2pi)/(3))hatj+sin(2theta+(4pi)/(3))hatk , vecc=sin(theta-(2pi)/(3))hati+cos(theta-(2pi)/(3))hatj + sin(2theta-(4pi)/(3))hatk is 18 cubic units, then the values of theta , in the interval (0,pi/2) , is/are

If x sintheta=ysin(theta+(2pi)/(3))=z sin(theta+(4pi)/(3)), then

If 2 sin(theta+(pi)/(3))=cos(theta-(pi)/(6)) , then tantheta =

The value of theta satisfying sin5 theta=sin3 theta-sin theta and 0

Distance between the points (a cos(theta+((2 pi)/(3))),a sin(theta+((2 pi)/(3)))) and (a cos(theta+((pi)/(3))),a sin(theta+((pi)/(3)))) is

The values of theta satisfying sin5 theta=sin3 theta-sin theta and 0

Solve: sin2theta=sin((2pi)/(3)-theta)

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. The value of the determinant |(sintheta,costheta,sin2theta),(sin(the...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |