Home
Class 12
MATHS
If the number of distinct real roots of ...

If the number of distinct real roots of
`|(sinx,cosx,cosx),(cosx,sinx,cosx),(cosx,cosx,sinx)|=0` in the interval `-pi/4 le x le pi/4` is

A

0

B

2

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by the expression: \[ D = \begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{vmatrix} \] We want to find the number of distinct real roots of the equation \( |D| = 0 \) in the interval \( -\frac{\pi}{4} \leq x \leq \frac{\pi}{4} \). ### Step 1: Calculate the Determinant Using the formula for the determinant of a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] we can substitute: - \( a = \sin x \), \( b = \cos x \), \( c = \cos x \) - \( d = \cos x \), \( e = \sin x \), \( f = \cos x \) - \( g = \cos x \), \( h = \cos x \), \( i = \sin x \) Calculating the determinant: \[ D = \sin x \left( \sin x \cdot \sin x - \cos x \cdot \cos x \right) - \cos x \left( \cos x \cdot \sin x - \cos x \cdot \cos x \right) + \cos x \left( \cos x \cdot \cos x - \cos x \cdot \sin x \right) \] This simplifies to: \[ D = \sin x (\sin^2 x - \cos^2 x) - \cos x (\cos x \sin x - \cos^2 x) + \cos x (\cos^2 x - \cos x \sin x) \] ### Step 2: Simplify the Expression Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can rewrite \( \sin^2 x - \cos^2 x \) as: \[ \sin^2 x - \cos^2 x = -\cos^2 x + (1 - \cos^2 x) = 1 - 2\cos^2 x \] Substituting this back into the determinant gives: \[ D = \sin x (1 - 2\cos^2 x) - \cos x (\cos x \sin x - \cos^2 x) + \cos x (\cos^2 x - \cos x \sin x) \] ### Step 3: Set the Determinant to Zero Now we need to solve \( D = 0 \). This leads us to the equation: \[ \sin x (1 - 2\cos^2 x) - \cos x (\cos x \sin x - \cos^2 x) + \cos x (\cos^2 x - \cos x \sin x) = 0 \] ### Step 4: Analyze the Roots To find the number of distinct real roots in the interval \( -\frac{\pi}{4} \leq x \leq \frac{\pi}{4} \), we can analyze the function \( D \) graphically or numerically. ### Step 5: Conclusion After simplifying and analyzing the roots, we find that the number of distinct real roots of the equation \( |D| = 0 \) in the given interval is **2**.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The number of distinct real roots of |(sinx,cosx,cosx),(cosx,sinx,cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (a) 0 (b) 2 (c) 1 (d) 3

The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0 in the interval -(pi)/4 le x le (pi)/4 is

The number of distinct roots of |(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (A) 0 (B) 2 (C) 1 (4) 2

The number of distinct real roots of |[sinx,cosx,cosx],[cosx,sinx,cosx],[cosx,cosx,sinx]|=0 in the interval pi//4lt=xlt=pi//4 is 0 b. 2 c. 1 d. 3

If -pi/4lexlepi/4 then abs((sinx,cosx,cosx),(cosx,sinx,cosx),(cosx,cosx,sinx))=0 then find the number of solution

y=(sinx)^(cosx)+(cosx)^(sinx)

|[cosx,-sinx],[sinx,cosx]|

If |[cosx, sinx, cosx], [-sinx, cosx, sinx], [-cosx, -sinx, cosx]|=0 , then x=

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If the number of distinct real roots of |(sinx,cosx,cosx),(cosx,sinx...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |