Home
Class 12
MATHS
Let f(x)=|(1,a,a^2),(sin(n-1)x,sinnx,sin...

Let `f(x)=|(1,a,a^2),(sin(n-1)x,sinnx,sin(n+1)x),(cos(n-1)x,cosnx,cos(n+1)x)|` then `int_(0)^(pi//2)` f (x) dx is equal to

A

`a-(1+a^2)`

B

`1+a+a^2`

C

`-a+(1+a^2)`

D

`-(1+a+a^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral \( \int_{0}^{\frac{\pi}{2}} f(x) \, dx \) where \[ f(x) = \left| \begin{array}{ccc} 1 & a & a^2 \\ \sin((n-1)x) & \sin(nx) & \sin((n+1)x) \\ \cos((n-1)x) & \cos(nx) & \cos((n+1)x) \end{array} \right| \] ### Step 1: Calculate the Determinant We will calculate the determinant \( f(x) \) using the formula for the determinant of a \( 3 \times 3 \) matrix: \[ f(x) = 1 \cdot \left( \sin(nx) \cdot \cos((n+1)x) - \sin((n+1)x) \cdot \cos(nx) \right) - a \cdot \left( \sin((n-1)x) \cdot \cos((n+1)x) - \sin((n+1)x) \cdot \cos((n-1)x) \right) + a^2 \cdot \left( \sin((n-1)x) \cdot \cos(nx) - \sin(nx) \cdot \cos((n-1)x) \right) \] ### Step 2: Simplify Each Term Using the identity \( \sin A \cos B - \cos A \sin B = \sin(A - B) \), we can simplify each term: 1. The first term simplifies to: \[ \sin(nx) \cos((n+1)x) - \sin((n+1)x) \cos(nx) = \sin(nx - (n+1)x) = \sin(-x) = -\sin(x) \] 2. The second term simplifies to: \[ -a \left( \sin((n-1)x) \cos((n+1)x) - \sin((n+1)x) \cos((n-1)x) \right) = -a \sin((n-1)x - (n+1)x) = -a \sin(-2x) = a \sin(2x) \] 3. The third term simplifies to: \[ a^2 \left( \sin((n-1)x) \cos(nx) - \sin(nx) \cos((n-1)x) \right) = a^2 \sin((n-1)x - nx) = a^2 \sin(-x) = -a^2 \sin(x) \] ### Step 3: Combine the Terms Combining all the simplified terms, we have: \[ f(x) = -\sin(x) + a \sin(2x) - a^2 \sin(x) = (a \sin(2x) - (1 + a^2) \sin(x)) \] ### Step 4: Set Up the Integral Now we need to evaluate the integral: \[ \int_{0}^{\frac{\pi}{2}} f(x) \, dx = \int_{0}^{\frac{\pi}{2}} \left( a \sin(2x) - (1 + a^2) \sin(x) \right) \, dx \] ### Step 5: Evaluate the Integral 1. The integral of \( \sin(2x) \) is: \[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) \] Therefore, \[ \int_{0}^{\frac{\pi}{2}} \sin(2x) \, dx = \left[-\frac{1}{2} \cos(2x)\right]_{0}^{\frac{\pi}{2}} = -\frac{1}{2} \left( \cos(\pi) - \cos(0) \right) = -\frac{1}{2} (-1 - 1) = 1 \] 2. The integral of \( \sin(x) \) is: \[ \int \sin(x) \, dx = -\cos(x) \] Therefore, \[ \int_{0}^{\frac{\pi}{2}} \sin(x) \, dx = \left[-\cos(x)\right]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1 \] ### Step 6: Combine Results Now substituting back into the integral: \[ \int_{0}^{\frac{\pi}{2}} f(x) \, dx = a \cdot 1 - (1 + a^2) \cdot 1 = a - (1 + a^2) = a - 1 - a^2 \] ### Final Answer Thus, the final result is: \[ \int_{0}^{\frac{\pi}{2}} f(x) \, dx = a - 1 - a^2 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Solve for x the equation |(a^(2),a,1),(sin(n+1)x,sin nx,sin(n-1)x),(cos(n+1)x,cosn x,cos(n-1)x)|=0

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

Prove that: sin(n+1)x sin(n+2)x+cos(n+1)x cos(n+2)x=c

Let g(x)=sqrt(sin^(-1)(cos(tan^(-1)x))+cos^(-1)(sin(cot^(-1)x))) ,then int_(-sqrt((pi)/(2)))^(sqrt((pi)/(2)))g(x)dx equals

Let f(x)=lim_(n rarr oo)(cos x)/((1+tan^(-1)x)^(n)), then int_(0)^(oo)f(x)dx=

int _(0)^(pi//2) (cos x - sin x)/(1+cos x sin x)dx is equal to

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. Let f(x)=|(1,a,a^2),(sin(n-1)x,sinnx,sin(n+1)x),(cos(n-1)x,cosnx,cos(n...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |