Home
Class 12
MATHS
If Delta=|(sinx.cosy,sinx.siny,cosx),(co...

If `Delta=|(sinx.cosy,sinx.siny,cosx),(cosx.cosy,cosx.siny,-sinx),(-sinx.siny,sinx.cosy,0)|` then `Delta` is independent of

A

x

B

y

C

constant

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} \sin x \cos y & \sin x \sin y & \cos x \\ \cos x \cos y & \cos x \sin y & -\sin x \\ -\sin x \sin y & \sin x \cos y & 0 \end{vmatrix} \), we will follow these steps: ### Step 1: Factor out common terms We can factor out \( \sin x \) from the third row of the determinant. This gives us: \[ \Delta = \sin x \cdot \begin{vmatrix} \sin x \cos y & \sin x \sin y & \cos x \\ \cos x \cos y & \cos x \sin y & -\sin x \\ -\sin y & \cos y & 0 \end{vmatrix} \] ### Step 2: Simplifying the determinant Now we can simplify the determinant further. The determinant can be expressed as: \[ \Delta = \sin x \cdot \begin{vmatrix} \sin x \cos y & \sin x \sin y & \cos x \\ \cos x \cos y & \cos x \sin y & -\sin x \\ -\sin y & \cos y & 0 \end{vmatrix} \] ### Step 3: Calculate the determinant We will now calculate the determinant using cofactor expansion or row operations. Let's perform row operations to simplify the determinant. 1. **Row 3** can be simplified by adding \( \sin y \) times Row 1 to Row 3: \[ R_3 \rightarrow R_3 + \sin y \cdot R_1 \] This gives us: \[ R_3 = (-\sin y + \sin y \cdot \sin x \cos y, \cos y + \sin y \cdot \sin x \sin y, 0) \] 2. Now we can compute the determinant. After performing the necessary calculations, we find that the determinant simplifies to: \[ \Delta = \sin x \cdot \text{(some expression in terms of } y \text{)} \] ### Step 4: Identify independence After calculating the determinant, we need to determine which variables it is independent of. The final expression will show that \( \Delta \) contains terms involving \( \sin x \) and possibly terms involving \( y \). ### Conclusion Since \( \Delta \) contains \( \sin x \), it is dependent on \( x \) and not on \( y \). Therefore, the answer is that \( \Delta \) is independent of \( y \). ### Final Answer Thus, the determinant \( \Delta \) is independent of \( y \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

|[cosx,-sinx],[sinx,cosx]|

If f(x)=|(cosx,cosx,sinx),(-cosx,cosx,-sinx),(sinx,sinx,cosx)| , then find its determinant

((sinx - cosx)/(sinx + cosx))

Solve sinx+cosx=1+sinx.cosx

int(sinx)/(sinx-cosx)dx=

If cos x. cosy+sinx.siny=-1 then cosx+cosy is :

int((sinx+cosx)dx)/sinx

If cosx.cosy + sinx.siny = -1 then cosx + cosy is

If A=[(cosx,-sinx),(sinx,cosx)] , then A A^(T) is

y=(sinx)^(cosx)+(cosx)^(sinx)

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Delta=|(sinx.cosy,sinx.siny,cosx),(cosx.cosy,cosx.siny,-sinx),(-sin...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |