Home
Class 12
MATHS
Let Delta=|(1,sinalpha,1),(-sinalpha,1,s...

Let `Delta=|(1,sinalpha,1),(-sinalpha,1,sinalpha),(-1,-sinalpha,1)|` then `Delta` lies in the interval

A

[2,3]

B

[3,4]

C

[1,4]

D

[2,4]

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( \Delta = \begin{vmatrix} 1 & \sin \alpha & 1 \\ -\sin \alpha & 1 & \sin \alpha \\ -1 & -\sin \alpha & 1 \end{vmatrix} \), we will expand it and simplify step by step. ### Step 1: Expand the Determinant We will expand the determinant along the first row (R1): \[ \Delta = 1 \cdot \begin{vmatrix} 1 & \sin \alpha \\ -\sin \alpha & 1 \end{vmatrix} - \sin \alpha \cdot \begin{vmatrix} -\sin \alpha & \sin \alpha \\ -1 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} -\sin \alpha & 1 \\ -1 & -\sin \alpha \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants Now, we will calculate each of the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} 1 & \sin \alpha \\ -\sin \alpha & 1 \end{vmatrix} = (1)(1) - (-\sin \alpha)(\sin \alpha) = 1 + \sin^2 \alpha \] 2. For the second determinant: \[ \begin{vmatrix} -\sin \alpha & \sin \alpha \\ -1 & 1 \end{vmatrix} = (-\sin \alpha)(1) - (\sin \alpha)(-1) = -\sin \alpha + \sin \alpha = 0 \] 3. For the third determinant: \[ \begin{vmatrix} -\sin \alpha & 1 \\ -1 & -\sin \alpha \end{vmatrix} = (-\sin \alpha)(-\sin \alpha) - (1)(-1) = \sin^2 \alpha + 1 \] ### Step 3: Substitute Back into the Determinant Now substitute these results back into the expression for \( \Delta \): \[ \Delta = 1 \cdot (1 + \sin^2 \alpha) - \sin \alpha \cdot 0 + 1 \cdot (\sin^2 \alpha + 1) \] This simplifies to: \[ \Delta = 1 + \sin^2 \alpha + \sin^2 \alpha + 1 = 2 + 2\sin^2 \alpha \] ### Step 4: Determine the Range of \( \Delta \) Now we need to find the range of \( \Delta = 2 + 2\sin^2 \alpha \). Since \( \sin^2 \alpha \) varies from 0 to 1, we can find the minimum and maximum values of \( \Delta \): - **Minimum value**: When \( \sin^2 \alpha = 0 \): \[ \Delta_{\text{min}} = 2 + 2 \cdot 0 = 2 \] - **Maximum value**: When \( \sin^2 \alpha = 1 \): \[ \Delta_{\text{max}} = 2 + 2 \cdot 1 = 4 \] Thus, \( \Delta \) lies in the interval \( [2, 4] \). ### Final Answer The determinant \( \Delta \) lies in the interval \( [2, 4] \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

(1-cos alpha)/(sinalpha)=tan(alpha/2)

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

Prove that (1-cosalpha)/sinalpha=tan(alpha/2)

If A=[(sinalpha,cosalpha),(-cosalpha,sinalpha)] , the prove that A'A=I .

costheta-sintheta=cosalpha-sinalpha

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. Let Delta=|(1,sinalpha,1),(-sinalpha,1,sinalpha),(-1,-sinalpha,1)| th...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |