Home
Class 12
MATHS
If Delta=|(cosalpha, -sinalpha,1),(sinal...

If `Delta=|(cosalpha, -sinalpha,1),(sinalpha,cosalpha,1),(cos(alpha+theta),-sin(alpha+theta),1)|` then

A

`Deltain[1-sqrt(2),1+sqrt2]`

B

`Deltain[-1,1]`

C

`Deltain[-sqrt2,sqrt2]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} \cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos(\alpha + \theta) & -\sin(\alpha + \theta) & 1 \end{vmatrix} \), we will follow these steps: ### Step 1: Rewrite the third row using trigonometric identities We can express \( \cos(\alpha + \theta) \) and \( \sin(\alpha + \theta) \) using the angle addition formulas: \[ \cos(\alpha + \theta) = \cos \alpha \cos \theta - \sin \alpha \sin \theta \] \[ \sin(\alpha + \theta) = \sin \alpha \cos \theta + \cos \alpha \sin \theta \] Thus, we can rewrite the determinant as: \[ \Delta = \begin{vmatrix} \cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos \alpha \cos \theta - \sin \alpha \sin \theta & -(\sin \alpha \cos \theta + \cos \alpha \sin \theta) & 1 \end{vmatrix} \] ### Step 2: Apply row operations To simplify the determinant, we can perform row operations. We will replace the third row \( R_3 \) with \( R_3 - R_1 \cos \theta - R_2 \sin \theta \): \[ R_3 \rightarrow R_3 - \cos \theta R_1 - \sin \theta R_2 \] This gives us: \[ R_3 = \begin{pmatrix} \cos \alpha \cos \theta - \sin \alpha \sin \theta - \cos \theta \cos \alpha - \sin \theta \sin \alpha \\ -(\sin \alpha \cos \theta + \cos \alpha \sin \theta) + \sin \theta \cos \alpha + \cos \theta \sin \alpha \\ 1 - 1 \end{pmatrix} \] The third row simplifies to: \[ R_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \] ### Step 3: Expand the determinant Now, we can expand the determinant: \[ \Delta = \begin{vmatrix} \cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ 0 & 0 & 0 \end{vmatrix} \] Since the third row is entirely zeros, the determinant evaluates to zero: \[ \Delta = 0 \] ### Step 4: Analyze the determinant The determinant \( \Delta \) is a function of \( \alpha \) and \( \theta \). To find the range of \( \Delta \), we need to consider the values of \( \sin \theta \) and \( \cos \theta \) as they vary. ### Final Result The determinant \( \Delta \) can be expressed in terms of \( \theta \): \[ \Delta = 1 - \cos \theta + \sin \theta \] To find the range of \( \Delta \), we analyze the expression: - The minimum value occurs when \( \theta = \frac{3\pi}{4} \) (or \( 135^\circ \)), giving \( \Delta = 1 - \sqrt{2} \). - The maximum value occurs when \( \theta = \frac{\pi}{4} \) (or \( 45^\circ \)), giving \( \Delta = 1 + \sqrt{2} \). Thus, the range of \( \Delta \) is: \[ \Delta \in [1 - \sqrt{2}, 1 + \sqrt{2}] \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

If A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

(1-cos alpha)/(sinalpha)=tan(alpha/2)

The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sinalpha,cosalpha,sinbeta),(-cosalpha,sinalpha,cosbeta):}| is independent of :-

If A=[(sinalpha,cosalpha),(-cosalpha,sinalpha)] , the prove that A'A=I .

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If Delta=|(cosalpha, -sinalpha,1),(sinalpha,cosalpha,1),(cos(alpha+the...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |