Home
Class 12
MATHS
If |(x-2,2x-3,3x-4),(x-4,2x-9,3x-16),(x-...

If `|(x-2,2x-3,3x-4),(x-4,2x-9,3x-16),(x-8,2x-27,3x-64)|` = 0 , then x =

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation given by \[ \left| \begin{array}{ccc} x-2 & 2x-3 & 3x-4 \\ x-4 & 2x-9 & 3x-16 \\ x-8 & 2x-27 & 3x-64 \end{array} \right| = 0, \] we will follow these steps: ### Step 1: Write the determinant We start with the determinant as given: \[ D = \left| \begin{array}{ccc} x-2 & 2x-3 & 3x-4 \\ x-4 & 2x-9 & 3x-16 \\ x-8 & 2x-27 & 3x-64 \end{array} \right|. \] ### Step 2: Apply column operations We will perform column operations to simplify the determinant. We can subtract \(2 \times \text{Column 1}\) from Column 2 and \(3 \times \text{Column 1}\) from Column 3: \[ C_2 \rightarrow C_2 - 2C_1 \quad \text{and} \quad C_3 \rightarrow C_3 - 3C_1. \] This gives us: \[ D = \left| \begin{array}{ccc} x-2 & (2x-3) - 2(x-2) & (3x-4) - 3(x-2) \\ x-4 & (2x-9) - 2(x-4) & (3x-16) - 3(x-4) \\ x-8 & (2x-27) - 2(x-8) & (3x-64) - 3(x-8) \end{array} \right|. \] Calculating the new columns: - For Column 2: - Row 1: \(2x - 3 - 2(x - 2) = 2x - 3 - 2x + 4 = 1\) - Row 2: \(2x - 9 - 2(x - 4) = 2x - 9 - 2x + 8 = -1\) - Row 3: \(2x - 27 - 2(x - 8) = 2x - 27 - 2x + 16 = -11\) - For Column 3: - Row 1: \(3x - 4 - 3(x - 2) = 3x - 4 - 3x + 6 = 2\) - Row 2: \(3x - 16 - 3(x - 4) = 3x - 16 - 3x + 12 = -4\) - Row 3: \(3x - 64 - 3(x - 8) = 3x - 64 - 3x + 24 = -40\) So, the determinant becomes: \[ D = \left| \begin{array}{ccc} x-2 & 1 & 2 \\ x-4 & -1 & -4 \\ x-8 & -11 & -40 \end{array} \right|. \] ### Step 3: Expand the determinant Now we can expand this determinant along the first row: \[ D = (x-2) \left| \begin{array}{cc} -1 & -4 \\ -11 & -40 \end{array} \right| - 1 \left| \begin{array}{cc} x-4 & -4 \\ x-8 & -40 \end{array} \right| + 2 \left| \begin{array}{cc} x-4 & -1 \\ x-8 & -11 \end{array} \right|. \] Calculating the 2x2 determinants: 1. \(\left| \begin{array}{cc} -1 & -4 \\ -11 & -40 \end{array} \right| = (-1)(-40) - (-4)(-11) = 40 - 44 = -4\) 2. \(\left| \begin{array}{cc} x-4 & -4 \\ x-8 & -40 \end{array} \right| = (x-4)(-40) - (-4)(x-8) = -40x + 160 + 4x - 32 = -36x + 128\) 3. \(\left| \begin{array}{cc} x-4 & -1 \\ x-8 & -11 \end{array} \right| = (x-4)(-11) - (-1)(x-8) = -11x + 44 + x - 8 = -10x + 36\) Substituting these back into the determinant expression: \[ D = (x-2)(-4) - 1(-36x + 128) + 2(-10x + 36). \] Expanding this gives: \[ D = -4x + 8 + 36x - 128 - 20x + 72. \] Combining like terms: \[ D = (-4x + 36x - 20x) + (8 - 128 + 72) = 12x - 48. \] ### Step 4: Set the determinant to zero Setting \(D = 0\): \[ 12x - 48 = 0. \] ### Step 5: Solve for x Solving for \(x\): \[ 12x = 48 \implies x = \frac{48}{12} = 4. \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{4}. \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

(i) Solve the equation |{:(x-2,2x-3,3x-4),(x-4,2x-9,3x-16),(x-8,2x-27,2x-64):}|=0 (ii) Prove that x = 1 is a root of the equation (ii) Prove that x=1 is a root of the following equation |{:(x+1,3,5),(2,x+2,5),(2,3,x+4):}|=0 Also find the remaining roots. (iii) If a+b+c=0 then solve |{:(a-x,c,b),(c,b-x,a),(v,a,c-x):}|=0 (iv) Solve |{:(6-x,3,3),(3,4-x,5),(3,5,4-5):}|=0

Solve :det[[x-2,2x-3,3x-4x-4,2x-9,3x-16x-8,2x-27,3x-64]]=0

Solve for xdet[[x-2,2x-3,3xx-4x-4,2x-9,3x-16x-8,2x-27,3x-64]]=0

Using properties of determinants, solve the following for x: |[x-2, 2x-3, 3x-4],[x-4, 2x-9, 3x-16],[ x-8, 2x-27, 3x-64]|=0

Solve: the [[x-2.2x-3.3x-4x-4.2x-9.3x-16x-8.2x-27.3x-64]] = 0

2x^2(x^3-x)-3x(x^4+2x)-2(x^2-3x^4)

If Delta(x)=|{:(x^2+4x-3,2x+4,13),(2x^2+5x-9,4x+5,26),(8x^2-6x+1,16x-6,104):}|=ax^3+bx^2+cx+d then

Let D(x)=|{:(x^2+4x-3, 2x+4,13),(2x^2+5x-9,4x+5,26),(8x^2-16x+1, 16x-6, 104):}|=alphax^3+betax^2 + gammax+delta then :

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If |(x-2,2x-3,3x-4),(x-4,2x-9,3x-16),(x-8,2x-27,3x-64)| = 0 , then x =

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |