Home
Class 12
MATHS
If |(p+x,p,x),(p-x,p,x),(p-x,p,-x)| = 0...

If `|(p+x,p,x),(p-x,p,x),(p-x,p,-x)|` = 0 then x is

A

p

B

2p

C

0

D

3p

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \( |(p+x, p, x), (p-x, p, x), (p-x, p, -x)| = 0 \), we will proceed step by step. ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} p+x & p & x \\ p-x & p & x \\ p-x & p & -x \end{vmatrix} \] ### Step 2: Apply column operations We can simplify the determinant by performing column operations. Let's replace the first column \( C_1 \) with \( C_1 - C_2 \): \[ D = \begin{vmatrix} (p+x) - p & p & x \\ (p-x) - p & p & x \\ (p-x) - p & p & -x \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} x & p & x \\ -x & p & x \\ -x & p & -x \end{vmatrix} \] ### Step 3: Factor out common terms Next, we can factor out common terms from the columns: \[ D = x \begin{vmatrix} 1 & p & 1 \\ -1 & p & 1 \\ -1 & p & -1 \end{vmatrix} \] ### Step 4: Calculate the 3x3 determinant Now we need to calculate the determinant: \[ D = x \begin{vmatrix} 1 & p & 1 \\ -1 & p & 1 \\ -1 & p & -1 \end{vmatrix} \] Using the determinant expansion along the first row: \[ D = x \left( 1 \cdot \begin{vmatrix} p & 1 \\ p & -1 \end{vmatrix} - p \cdot \begin{vmatrix} -1 & 1 \\ -1 & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} -1 & p \\ -1 & p \end{vmatrix} \right) \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} p & 1 \\ p & -1 \end{vmatrix} = p(-1) - p(1) = -p - p = -2p \) 2. \( \begin{vmatrix} -1 & 1 \\ -1 & -1 \end{vmatrix} = (-1)(-1) - (-1)(1) = 1 + 1 = 2 \) 3. \( \begin{vmatrix} -1 & p \\ -1 & p \end{vmatrix} = (-1)(p) - (-1)(p) = -p + p = 0 \) Substituting these back into the determinant: \[ D = x \left( 1 \cdot (-2p) - p \cdot 2 + 1 \cdot 0 \right) = x \left( -2p - 2p \right) = x(-4p) \] ### Step 5: Set the determinant equal to zero We have: \[ D = -4px = 0 \] This implies either \( x = 0 \) or \( p = 0 \). ### Conclusion Since we are asked to find the value of \( x \), the solution is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

|(x,p,q),(p,x,q),(p,q,x)| =

If P(x)=[(cosx, sinx),(-sinx, cosx)] , then show that P(x).P(y)=P(x+y)=P(y).P(x) .

Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(3)):}| , where p is a constant. What is the value of p for which f''(0) = 0 ?

(x^(2)+x+1)p(x-1)=(x^(2)-x+1)p(x) If p(1)=3 then find int_(-2)^(1)(dx)/(p(x)+x)

If P(x) =x+3, then p(x)+p(-x) is equal to

If p(x)=x+4 then p(x)+p(-x)= ?

If P(x) is a polynomial such that P(x^(2)+1)={P(x)}^(2)+1 and P(0)=0, then P'(0) is equal to

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If |(p+x,p,x),(p-x,p,x),(p-x,p,-x)| = 0 then x is

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |