Home
Class 12
MATHS
If |(1,3,9),(1,x,x^2),(4,6,9)|=0 then...

If `|(1,3,9),(1,x,x^2),(4,6,9)|=0` then

A

x = 3

B

x = 3 or x = 6

C

x = 3 or 3/2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the determinant \[ \begin{vmatrix} 1 & 3 & 9 \\ 1 & x & x^2 \\ 4 & 6 & 9 \end{vmatrix} = 0. \] ### Step 1: Expand the Determinant We will expand the determinant using the first row (R1): \[ \text{Det} = 1 \cdot \begin{vmatrix} x & x^2 \\ 6 & 9 \end{vmatrix} - 3 \cdot \begin{vmatrix} 1 & x^2 \\ 4 & 9 \end{vmatrix} + 9 \cdot \begin{vmatrix} 1 & x \\ 4 & 6 \end{vmatrix}. \] ### Step 2: Calculate the 2x2 Determinants Now we will calculate each of the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} x & x^2 \\ 6 & 9 \end{vmatrix} = x \cdot 9 - x^2 \cdot 6 = 9x - 6x^2. \] 2. For the second determinant: \[ \begin{vmatrix} 1 & x^2 \\ 4 & 9 \end{vmatrix} = 1 \cdot 9 - x^2 \cdot 4 = 9 - 4x^2. \] 3. For the third determinant: \[ \begin{vmatrix} 1 & x \\ 4 & 6 \end{vmatrix} = 1 \cdot 6 - x \cdot 4 = 6 - 4x. \] ### Step 3: Substitute Back into the Determinant Expression Now substitute these back into the determinant expression: \[ \text{Det} = 1(9x - 6x^2) - 3(9 - 4x^2) + 9(6 - 4x). \] ### Step 4: Simplify the Expression Expanding the expression gives: \[ = 9x - 6x^2 - 27 + 12x^2 + 54 - 36x. \] Combining like terms: \[ = (-6x^2 + 12x^2) + (9x - 36x) + (-27 + 54). \] This simplifies to: \[ = 6x^2 - 27x + 27. \] ### Step 5: Set the Determinant to Zero Now we set the determinant equal to zero: \[ 6x^2 - 27x + 27 = 0. \] ### Step 6: Solve the Quadratic Equation We can simplify this equation by dividing everything by 3: \[ 2x^2 - 9x + 9 = 0. \] Next, we will use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2 \), \( b = -9 \), and \( c = 9 \). Calculating the discriminant: \[ b^2 - 4ac = (-9)^2 - 4 \cdot 2 \cdot 9 = 81 - 72 = 9. \] Now substituting into the quadratic formula: \[ x = \frac{9 \pm \sqrt{9}}{2 \cdot 2} = \frac{9 \pm 3}{4}. \] This gives us two solutions: 1. \( x = \frac{12}{4} = 3 \) 2. \( x = \frac{6}{4} = \frac{3}{2} \) ### Final Answer The values of \( x \) are \( x = 3 \) and \( x = \frac{3}{2} \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If |(2,3,2),(x,x,x),(4,9,1)|+3=0 ,then the value of X is

If |[2,3,2],[x,x,x],[4,9,1]|+3=0 , then the value of x=

If |[2,3,2],[x,x,x],[4,9,1]| +3=0 ,then the value of x is

If |[2,3,2],[x,x,x],[4,9,1]|+3=0 , then find the value of x.

If [(2,3),(5,7)] [(1,-3),(-2,4)]=[(-4,6),(-9,x)], write the value of x

If the points (3,9,x), (-4,4,4), (4,5,1) and (0,-1,-1) are coplanar, then x=

If {:((-2,-1),(3a,b),(4,-6+x)):}={:((-2,-1),(9,-1),(4,2)):}," then "(x)/(a+b) =

If (x)/(6)+(x)/(4)=(x)/(2)+(3)/(4), then x=9(b)6-9

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If |(1,3,9),(1,x,x^2),(4,6,9)|=0 then

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |