Home
Class 12
MATHS
If the value of the determinant |(x,1,1)...

If the value of the determinant `|(x,1,1),(1,y,1),(1,1,z)|` is positive, then

A

`xyz gt 1`

B

`xyz gt - 8`

C

`xyz lt - 8`

D

`xyz gt - 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} x & 1 & 1 \\ 1 & y & 1 \\ 1 & 1 & z \end{vmatrix} \) and find the conditions under which it is positive, we will follow these steps: ### Step 1: Calculate the Determinant We can calculate the determinant using the formula for a 3x3 matrix: \[ D = x \begin{vmatrix} y & 1 \\ 1 & z \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & z \end{vmatrix} + 1 \begin{vmatrix} 1 & y \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} y & 1 \\ 1 & z \end{vmatrix} = yz - 1 \] \[ \begin{vmatrix} 1 & 1 \\ 1 & z \end{vmatrix} = z - 1 \] \[ \begin{vmatrix} 1 & y \\ 1 & 1 \end{vmatrix} = 1 - y \] Substituting these back into the determinant formula: \[ D = x(yz - 1) - (z - 1) + (1 - y) \] ### Step 2: Simplify the Expression Now, we simplify \( D \): \[ D = xyz - x - z + 1 + 1 - y \] Combining like terms: \[ D = xyz - x - y - z + 2 \] ### Step 3: Set the Condition for Positivity We want \( D > 0 \): \[ xyz - x - y - z + 2 > 0 \] Rearranging gives: \[ xyz > x + y + z - 2 \] ### Step 4: Analyze the Condition To analyze this inequality, we can use the AM-GM inequality, which states that for non-negative numbers \( a, b, c \): \[ \frac{a + b + c}{3} \geq \sqrt[3]{abc} \] Setting \( a = x \), \( b = y \), and \( c = z \): \[ \frac{x + y + z}{3} \geq \sqrt[3]{xyz} \] Multiplying both sides by 3 gives: \[ x + y + z \geq 3\sqrt[3]{xyz} \] ### Step 5: Combine the Results From our earlier inequality \( xyz > x + y + z - 2 \), we can substitute \( x + y + z \) from the AM-GM result: \[ xyz > 3\sqrt[3]{xyz} - 2 \] Let \( k = \sqrt[3]{xyz} \), then \( xyz = k^3 \): \[ k^3 > 3k - 2 \] ### Step 6: Solve the Cubic Inequality Rearranging gives: \[ k^3 - 3k + 2 > 0 \] Factoring the cubic: \[ (k - 1)^2(k + 2) > 0 \] ### Step 7: Analyze the Roots The roots of the equation are \( k = 1 \) and \( k = -2 \). The intervals to test are: 1. \( k < -2 \) 2. \( -2 < k < 1 \) 3. \( k > 1 \) Testing these intervals, we find that the inequality holds for: \[ k > 1 \quad \text{or} \quad xyz > 1 \] ### Final Conclusion Thus, the condition for the determinant to be positive is: \[ xyz > 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The least value of the product xyz for which the determinant |(x,1,1),(1,y,1),(1,1,z)| is non-negative, is: (A) -16sqrt2 (B) -2sqrt2 (C) -1 (D) -8

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

Given that xyz = -1 , the value of the determinant |(x,x^(2),1 +x^(3)),(y,y^(2),1 + y^(3)),(z,z^(2),1 +z^(3))| is

If X, Y and Z are positive numbers such that Y and Z have respectively 1 and 0 at their unit's place and Delta is the determinant |(X,4,1),(Y,0,1),(Z,1,0)| If (Delta + 1) is divisible by 10, then x has at its unit's place

If [] denotes the greatest integer less than or equal to the real number under consideration and -1lt=xlt0,0lt=ylt1,1lt=zlt2, the value of the determinant |{:([x]+1,[y],[z]),([x],[y]+1,[z]),([x],[y],[z]+1):}| is

The value of |{:(x,x^2-yz,1),(y,y^2-zy,1),(z,z^2-xy,1):}| is

The value of the determinant |{:(x^(2),1,y^(2)+z^(2)),(y^(2),1,z^(2)+x^(2)),(z^(2),1,x^(2)+y^(2)):}| is :

If 0le[x]lt2,-1le[y]lt1and1le[z]lt3 , where [*] denotes the greatest integer function, then the maximum value of the determinant |{:([x]+1,,[y],,[z]),([x],,[y]+1,,[z]),([x],,[y],,[z]+1):}| is -

ML KHANNA-DETERMINANTS -Self Assessment Test
  1. If the value of the determinant |(x,1,1),(1,y,1),(1,1,z)| is positive...

    Text Solution

    |

  2. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  3. |(b+c,a,a),(b,c+a,b),(c,c,a+b)|=

    Text Solution

    |

  4. |(1,1,1),(a,b,c),(a^3,b^3,c^3)|=

    Text Solution

    |

  5. |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. The solution of the equation |(x,2,-1),(2,5,x),(-1,2,x)| = 0 are

    Text Solution

    |

  8. The roots of the equation |(0,x,16),(x,5,7),(0,9,x)| = 0 are

    Text Solution

    |

  9. |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|...

    Text Solution

    |

  10. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)| = 0

    Text Solution

    |

  11. If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    Text Solution

    |

  12. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  13. |((a^x+a^(-x))^2,(a^x-a^(-x))^(2),1),((b^x+b^(-x))^2,(b^x-b^(-x))^(2),...

    Text Solution

    |

  14. The number of values of k which the linear equations 4x+ky+2z=0 kx...

    Text Solution

    |

  15. The value of k for which the set of equationsx + ky + 3z=0, 3x + ky – ...

    Text Solution

    |

  16. If x + y +z=0, 4x+3y -z=0 and 3x + 5y +3z=0 is the given system of equ...

    Text Solution

    |

  17. The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 ha...

    Text Solution

    |

  18. The system of equations x+y+z=6, x+2y + 3z= 10, x+2y + lamdaz=mu has n...

    Text Solution

    |

  19. The system of linear equations x1 + 2x2 + x3 = 3, 2x1 + 3x2 + x3 = 3...

    Text Solution

    |

  20. Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c...

    Text Solution

    |