Home
Class 12
MATHS
If R be the circum radius of the triang...

If R be the circum radius of the triangle ABC then the value of
`R^3/((a-b)(b-c)(c-a))|(1,1,1),(sin A,sinB,sinC),(sin^2A,sin^2B,sin^2C)|` is

A

8

B

`1//8`

C

4

D

`1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \[ \frac{R^3}{(a-b)(b-c)(c-a)} \left| \begin{array}{ccc} 1 & 1 & 1 \\ \sin A & \sin B & \sin C \\ \sin^2 A & \sin^2 B & \sin^2 C \end{array} \right| \] where \( R \) is the circumradius of triangle \( ABC \) and \( a, b, c \) are the lengths of the sides opposite to angles \( A, B, C \) respectively. ### Step 1: Use the relationship between sides and angles We know that for a triangle, the circumradius \( R \) is related to the sides and angles by the formula: \[ 2R = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] From this, we can express \( \sin A, \sin B, \sin C \) in terms of \( R \): \[ \sin A = \frac{a}{2R}, \quad \sin B = \frac{b}{2R}, \quad \sin C = \frac{c}{2R} \] ### Step 2: Substitute into the determinant Now, we substitute these values into the determinant: \[ \left| \begin{array}{ccc} 1 & 1 & 1 \\ \frac{a}{2R} & \frac{b}{2R} & \frac{c}{2R} \\ \left(\frac{a}{2R}\right)^2 & \left(\frac{b}{2R}\right)^2 & \left(\frac{c}{2R}\right)^2 \end{array} \right| \] This can be simplified as: \[ \frac{1}{(2R)^2} \left| \begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{array} \right| \] ### Step 3: Factor out constants The determinant can be factored out: \[ \frac{1}{4R^2} \left| \begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{array} \right| \] ### Step 4: Evaluate the determinant The determinant \[ \left| \begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{array} \right| \] is known to be equal to \[ (a-b)(b-c)(c-a) \] ### Step 5: Substitute back into the expression Now substituting this back into our expression: \[ \frac{R^3}{(a-b)(b-c)(c-a)} \cdot \frac{1}{4R^2} \cdot (a-b)(b-c)(c-a) \] ### Step 6: Simplify The \( (a-b)(b-c)(c-a) \) terms cancel out: \[ \frac{R^3}{4R^2} = \frac{R}{4} \] ### Final Result Thus, the final value is: \[ \frac{R}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If A ,B and C are the angles of an equilateral triangle, then the value of |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C):}| is ...........

(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C):}| =0 then prove that Delta ABC must be isoceles.

If A, B, C are angle of a triangle ABC, then the value of the determinant |(sin (A/2), sin (B/2), sin (C/2)), (sin(A+B+C), sin(B/2), cos(A/2)), (cos((A+B+C)/2), tan(A+B+C), sin (C/2))| is less than or equal to

In a Delta ABC |[1,1,1],[1+sinA,1+sinB,1+sinC][sinA+sin^2A,sinB+sin^2B,sinC+sin^2C]|=0

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

ML KHANNA-DETERMINANTS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+s...

    Text Solution

    |

  2. If R be the circum radius of the triangle ABC then the value of R^3...

    Text Solution

    |

  3. If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1...

    Text Solution

    |

  4. If A+B+C=pi, show that |(sin^2A,sinAcosA,cos^2A),(sin^2B,sinBcosB,cos...

    Text Solution

    |

  5. If x,y,z are all distinct and |(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1...

    Text Solution

    |

  6. If |(x+a,a^2,a^3),(x+b,b^2,b^3),(x+c,c^2,c^3)| = 0 , a ne b ne c then ...

    Text Solution

    |

  7. If a,b,c be all distinct and |(a^3-1,b^3-1,c^3-1),(a,b,c),(a^2,b^2,c...

    Text Solution

    |

  8. If a,b,c are different , then the determinant |(1,1,1),((x-a)^2,(x-b...

    Text Solution

    |

  9. If |(x^(lamda),x^(lamda+2),x^(lamda+3)),(y^(lamda),y^(lamda+2),y^(lamd...

    Text Solution

    |

  10. Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx...

    Text Solution

    |

  11. If a,b,c are negative distinct real numbers then the determinant |(a,b...

    Text Solution

    |

  12. the value of the determinant |(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)| is

    Text Solution

    |

  13. If |(x,y,z),(y,z,x),(z,x,y)|=-(x+y+z)(x+yk+zk^2)(x+yk^2+zk) then k eq...

    Text Solution

    |

  14. If a,b,c are the roots of x^3+px^2+q=0 , then the value of |(a,b,c),(b...

    Text Solution

    |

  15. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  16. If both n and r be greater than 1 and if Delta=|(""^xCr,""^(n-1)Cr,"...

    Text Solution

    |

  17. If Delta=|(""^(10)C3,""^(10)C4,""^(11)Cn),(""^(11)C5,""^(11)C6,""^(12)...

    Text Solution

    |

  18. If Delta = |(""^(5)C0,""^(5)C3,14),(""^(5)C1,""^(5)C4,1),(""^(5)C2,""^...

    Text Solution

    |

  19. The value of the determinant |(1,1,1),(.^(m)C(1),.^(m +1)C(1),.^(m+2)C...

    Text Solution

    |

  20. The determinant |(y^(2),-xy,x^(2)),(a,b,c),(a',b',c')| is equal to

    Text Solution

    |