Home
Class 12
MATHS
the value of the determinant |(b+c,a-b,a...

the value of the determinant `|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)|` is

A

`a^3+b^3+c^3 -3abc `

B

`3abc -a^3-b^3-c^3`

C

`3abc +a^3+b^3+c^3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix} \] we will perform a series of row operations and then calculate the determinant. ### Step 1: Row Operation We will perform the operation \( R_1 \rightarrow R_1 + R_2 + R_3 \). Calculating the new elements of \( R_1 \): - First element: \( (b+c) + (c+a) + (a+b) = 2a + 2b + 2c \) - Second element: \( (a-b) + (b-c) + (c-a) = 0 \) - Third element: \( a + b + c \) Thus, the new determinant becomes: \[ D = \begin{vmatrix} 2(a+b+c) & 0 & a+b+c \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix} \] ### Step 2: Factor out common terms We can factor out \( a+b+c \) from the first row: \[ D = (a+b+c) \begin{vmatrix} 2 & 0 & 1 \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix} \] ### Step 3: Calculate the determinant Now we will calculate the determinant of the remaining 3x3 matrix: \[ D' = \begin{vmatrix} 2 & 0 & 1 \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix} \] Using the first row for expansion: \[ D' = 2 \begin{vmatrix} b-c & b \\ c-a & c \end{vmatrix} - 0 + 1 \begin{vmatrix} c+a & b-c \\ a+b & c-a \end{vmatrix} \] Calculating the first determinant: \[ \begin{vmatrix} b-c & b \\ c-a & c \end{vmatrix} = (b-c)c - b(c-a) = bc - c^2 - bc + ab = ab - c^2 \] Calculating the second determinant: \[ \begin{vmatrix} c+a & b-c \\ a+b & c-a \end{vmatrix} = (c+a)(c-a) - (b-c)(a+b) = c^2 - a^2 + ab + bc - ac - b^2 + bc \] Thus, we get: \[ D' = 2(ab - c^2) + (c^2 - a^2 + ab + 2bc - b^2 - ac) \] ### Step 4: Combine terms Now we combine the terms: \[ D' = 2ab - 2c^2 + c^2 - a^2 + ab + 2bc - b^2 - ac \] \[ = 3ab - a^2 - b^2 - ac - c^2 \] ### Step 5: Final determinant value Now substituting back into \( D \): \[ D = (a+b+c)(3ab - a^2 - b^2 - ac - c^2) \] ### Final Answer Thus, the value of the determinant is: \[ D = (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

What is the value of the determinant |(a-b,b+c,a),(b-c,c+a,b),(c-a,a+b,c)| ?

If a ne b ne c are all positive, then the value of the determinant |{:(a,b,c),(b,c,a),(c,a,b):}| is

What is the value of the determinant |{:(a-b,b+c,a),(b-c,c+a,b),(c-a,a+b,c):}| ?

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

What is the value of the determinant |(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))| ?

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

The value of determinant |{:(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c):}| is

ML KHANNA-DETERMINANTS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. If R be the circum radius of the triangle ABC then the value of R^3...

    Text Solution

    |

  2. If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1...

    Text Solution

    |

  3. If A+B+C=pi, show that |(sin^2A,sinAcosA,cos^2A),(sin^2B,sinBcosB,cos...

    Text Solution

    |

  4. If x,y,z are all distinct and |(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1...

    Text Solution

    |

  5. If |(x+a,a^2,a^3),(x+b,b^2,b^3),(x+c,c^2,c^3)| = 0 , a ne b ne c then ...

    Text Solution

    |

  6. If a,b,c be all distinct and |(a^3-1,b^3-1,c^3-1),(a,b,c),(a^2,b^2,c...

    Text Solution

    |

  7. If a,b,c are different , then the determinant |(1,1,1),((x-a)^2,(x-b...

    Text Solution

    |

  8. If |(x^(lamda),x^(lamda+2),x^(lamda+3)),(y^(lamda),y^(lamda+2),y^(lamd...

    Text Solution

    |

  9. Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx...

    Text Solution

    |

  10. If a,b,c are negative distinct real numbers then the determinant |(a,b...

    Text Solution

    |

  11. the value of the determinant |(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)| is

    Text Solution

    |

  12. If |(x,y,z),(y,z,x),(z,x,y)|=-(x+y+z)(x+yk+zk^2)(x+yk^2+zk) then k eq...

    Text Solution

    |

  13. If a,b,c are the roots of x^3+px^2+q=0 , then the value of |(a,b,c),(b...

    Text Solution

    |

  14. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  15. If both n and r be greater than 1 and if Delta=|(""^xCr,""^(n-1)Cr,"...

    Text Solution

    |

  16. If Delta=|(""^(10)C3,""^(10)C4,""^(11)Cn),(""^(11)C5,""^(11)C6,""^(12)...

    Text Solution

    |

  17. If Delta = |(""^(5)C0,""^(5)C3,14),(""^(5)C1,""^(5)C4,1),(""^(5)C2,""^...

    Text Solution

    |

  18. The value of the determinant |(1,1,1),(.^(m)C(1),.^(m +1)C(1),.^(m+2)C...

    Text Solution

    |

  19. The determinant |(y^(2),-xy,x^(2)),(a,b,c),(a',b',c')| is equal to

    Text Solution

    |

  20. |(bc,bc'+b'c,b'c'),(ca,ca'+ac',c'a'),(ab,ab'+a'b,a'b')| is equal to

    Text Solution

    |