Home
Class 12
MATHS
If a,b,c are the roots of x^3+px^2+q=0 ,...

If a,b,c are the roots of `x^3+px^2+q=0` , then the value of `|(a,b,c),(b,c,a),(c,a,b)|` is equal to

A

`-p^3`

B

`p^3-3q`

C

`p^3`

D

`p^2-3q`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant: \[ D = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \] where \( a, b, c \) are the roots of the polynomial \( x^3 + px^2 + q = 0 \). ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \] ### Step 2: Use properties of determinants We can use the property of determinants that allows us to add rows. Let's add all three rows together to the first row: \[ D = \begin{vmatrix} a + b + c & a + b + c & a + b + c \\ b & c & a \\ c & a & b \end{vmatrix} \] ### Step 3: Factor out the common term Now, we can factor out \( a + b + c \) from the first row: \[ D = (a + b + c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix} \] ### Step 4: Calculate the smaller determinant Next, we need to calculate the smaller determinant: \[ D' = \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix} \] Using the determinant formula, we can expand this: \[ D' = 1 \cdot \begin{vmatrix} c & a \\ a & b \end{vmatrix} - 1 \cdot \begin{vmatrix} b & a \\ c & b \end{vmatrix} + 1 \cdot \begin{vmatrix} b & c \\ c & a \end{vmatrix} \] Calculating each of these 2x2 determinants, we have: 1. \( \begin{vmatrix} c & a \\ a & b \end{vmatrix} = cb - a^2 \) 2. \( \begin{vmatrix} b & a \\ c & b \end{vmatrix} = bb - ac = b^2 - ac \) 3. \( \begin{vmatrix} b & c \\ c & a \end{vmatrix} = ba - c^2 \) Thus, we have: \[ D' = (cb - a^2) - (b^2 - ac) + (ba - c^2) \] ### Step 5: Simplify \( D' \) Combining these terms: \[ D' = cb - a^2 - b^2 + ac + ba - c^2 \] ### Step 6: Substitute back into \( D \) Now, substituting back into \( D \): \[ D = (a + b + c)(cb - a^2 - b^2 + ac + ba - c^2) \] ### Step 7: Use the relationships from the polynomial From the polynomial \( x^3 + px^2 + q = 0 \), we know: - \( a + b + c = -p \) - \( ab + ac + bc = 0 \) (since the coefficient of \( x \) is 0) - \( abc = -q \) ### Step 8: Final simplification Using the relationships, we can further simplify \( D \): Since \( ab + ac + bc = 0 \), we can substitute into our expression for \( D' \) to find that the determinant simplifies to 0. Thus, the final value of the determinant is: \[ D = 0 \] ### Conclusion The value of the determinant \( |(a,b,c),(b,c,a),(c,a,b)| \) is equal to \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If a-b,b-c are the roots of ax^(2)+bx+c=0 then the value of ((a-b)(b-c))/(c-a) ,is

If f(x) =a+bx+cx^(2) and alpha,beta "and" gamma are the roots of the equation x^(3)=1 , then |{:(a,b,c),(b,c,a),(c,a,b):}| is equal to

if a,b and c are the roots of the equation x^3+2x^2+1=0 , find |{:(a,b,x),(b,c,a),(c,a,b):}|

If a,b are roots of the equation x^(2)+qx+1=0 and c, dare roots of x^(2)+px+1=0, then the value of (a-c)(b-c)(a+d)(b+d) will be

If a,b,c are the roots of the equation 7x^3-25x+42=0 then the value of the expression (a+b)^3+(b+c)^3+(c+a)^3 is

If a,b,c are the roots of the equation x^(3)+px+q=0, then find the value of the determinant |1+a1111+b1111+c|

If a ,\ b ,\ c are roots of the equation x^3+p x+q=0 , prove that |a b c b c a c a b|=0 .

ML KHANNA-DETERMINANTS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. If R be the circum radius of the triangle ABC then the value of R^3...

    Text Solution

    |

  2. If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1...

    Text Solution

    |

  3. If A+B+C=pi, show that |(sin^2A,sinAcosA,cos^2A),(sin^2B,sinBcosB,cos...

    Text Solution

    |

  4. If x,y,z are all distinct and |(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1...

    Text Solution

    |

  5. If |(x+a,a^2,a^3),(x+b,b^2,b^3),(x+c,c^2,c^3)| = 0 , a ne b ne c then ...

    Text Solution

    |

  6. If a,b,c be all distinct and |(a^3-1,b^3-1,c^3-1),(a,b,c),(a^2,b^2,c...

    Text Solution

    |

  7. If a,b,c are different , then the determinant |(1,1,1),((x-a)^2,(x-b...

    Text Solution

    |

  8. If |(x^(lamda),x^(lamda+2),x^(lamda+3)),(y^(lamda),y^(lamda+2),y^(lamd...

    Text Solution

    |

  9. Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx...

    Text Solution

    |

  10. If a,b,c are negative distinct real numbers then the determinant |(a,b...

    Text Solution

    |

  11. the value of the determinant |(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)| is

    Text Solution

    |

  12. If |(x,y,z),(y,z,x),(z,x,y)|=-(x+y+z)(x+yk+zk^2)(x+yk^2+zk) then k eq...

    Text Solution

    |

  13. If a,b,c are the roots of x^3+px^2+q=0 , then the value of |(a,b,c),(b...

    Text Solution

    |

  14. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  15. If both n and r be greater than 1 and if Delta=|(""^xCr,""^(n-1)Cr,"...

    Text Solution

    |

  16. If Delta=|(""^(10)C3,""^(10)C4,""^(11)Cn),(""^(11)C5,""^(11)C6,""^(12)...

    Text Solution

    |

  17. If Delta = |(""^(5)C0,""^(5)C3,14),(""^(5)C1,""^(5)C4,1),(""^(5)C2,""^...

    Text Solution

    |

  18. The value of the determinant |(1,1,1),(.^(m)C(1),.^(m +1)C(1),.^(m+2)C...

    Text Solution

    |

  19. The determinant |(y^(2),-xy,x^(2)),(a,b,c),(a',b',c')| is equal to

    Text Solution

    |

  20. |(bc,bc'+b'c,b'c'),(ca,ca'+ac',c'a'),(ab,ab'+a'b,a'b')| is equal to

    Text Solution

    |