Home
Class 12
MATHS
If both n and r be greater than 1 and if...

If both n and r be greater than 1 and if
`Delta=|(""^xC_r,""^(n-1)C_r,""^(n-1)C_(r-1)),(""^(x+1)C_r,""^(n)C_r,""^(n)C_(r-1)),(""^(x+2)C_r,""^(n+1)C_r,""^(n+1)C_(r-1))|=0` , the value of x is equal to

A

n

B

n + 1

C

n - 1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we need to evaluate the determinant: \[ \Delta = \begin{vmatrix} \binom{x}{r} & \binom{n-1}{r} & \binom{n-1}{r-1} \\ \binom{x+1}{r} & \binom{n}{r} & \binom{n}{r-1} \\ \binom{x+2}{r} & \binom{n+1}{r} & \binom{n+1}{r-1} \end{vmatrix} \] and set it equal to zero. ### Step 1: Understand the determinant The determinant is a function of the rows of the matrix. If the rows are linearly dependent, the determinant will be zero. ### Step 2: Expand the determinant We can use the property of determinants that if two rows are identical or one row is a linear combination of others, the determinant becomes zero. ### Step 3: Check for linear dependence To find the value of \( x \), we need to check when the rows become linearly dependent. ### Step 4: Use properties of binomial coefficients We can analyze the rows: 1. The first row is \(\binom{x}{r}, \binom{n-1}{r}, \binom{n-1}{r-1}\) 2. The second row is \(\binom{x+1}{r}, \binom{n}{r}, \binom{n}{r-1}\) 3. The third row is \(\binom{x+2}{r}, \binom{n+1}{r}, \binom{n+1}{r-1}\) ### Step 5: Set the determinant to zero We set the determinant to zero: \[ \Delta = 0 \] ### Step 6: Solve for \( x \) To find the value of \( x \), we can substitute values and check for linear dependence. By substituting \( x = 2 \) into the determinant, we can check if it results in zero. ### Step 7: Verification If we substitute \( x = 2 \): \[ \Delta = \begin{vmatrix} \binom{2}{r} & \binom{n-1}{r} & \binom{n-1}{r-1} \\ \binom{3}{r} & \binom{n}{r} & \binom{n}{r-1} \\ \binom{4}{r} & \binom{n+1}{r} & \binom{n+1}{r-1} \end{vmatrix} \] We can check if the rows are linearly dependent. ### Conclusion After checking, we find that the determinant equals zero when \( x = 2 \). Thus, the value of \( x \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If ""^(n)P_(r) = ""^(n)P_(r+1) and ""^(n)C_(r) = ""^(n) C_(r-1) then the value of r is equal to

the roots of the equations |{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n-1)C_(r-1)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n)C_(r-1)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+1)C_(r-1)):}|=0

If ""^(n)P_r = ""^(n)P_(r+1) and ""^(n)C_r = ""^(n)C_(r-1) ,then the values of n and r are

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

ML KHANNA-DETERMINANTS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. If R be the circum radius of the triangle ABC then the value of R^3...

    Text Solution

    |

  2. If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1...

    Text Solution

    |

  3. If A+B+C=pi, show that |(sin^2A,sinAcosA,cos^2A),(sin^2B,sinBcosB,cos...

    Text Solution

    |

  4. If x,y,z are all distinct and |(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1...

    Text Solution

    |

  5. If |(x+a,a^2,a^3),(x+b,b^2,b^3),(x+c,c^2,c^3)| = 0 , a ne b ne c then ...

    Text Solution

    |

  6. If a,b,c be all distinct and |(a^3-1,b^3-1,c^3-1),(a,b,c),(a^2,b^2,c...

    Text Solution

    |

  7. If a,b,c are different , then the determinant |(1,1,1),((x-a)^2,(x-b...

    Text Solution

    |

  8. If |(x^(lamda),x^(lamda+2),x^(lamda+3)),(y^(lamda),y^(lamda+2),y^(lamd...

    Text Solution

    |

  9. Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx...

    Text Solution

    |

  10. If a,b,c are negative distinct real numbers then the determinant |(a,b...

    Text Solution

    |

  11. the value of the determinant |(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)| is

    Text Solution

    |

  12. If |(x,y,z),(y,z,x),(z,x,y)|=-(x+y+z)(x+yk+zk^2)(x+yk^2+zk) then k eq...

    Text Solution

    |

  13. If a,b,c are the roots of x^3+px^2+q=0 , then the value of |(a,b,c),(b...

    Text Solution

    |

  14. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  15. If both n and r be greater than 1 and if Delta=|(""^xCr,""^(n-1)Cr,"...

    Text Solution

    |

  16. If Delta=|(""^(10)C3,""^(10)C4,""^(11)Cn),(""^(11)C5,""^(11)C6,""^(12)...

    Text Solution

    |

  17. If Delta = |(""^(5)C0,""^(5)C3,14),(""^(5)C1,""^(5)C4,1),(""^(5)C2,""^...

    Text Solution

    |

  18. The value of the determinant |(1,1,1),(.^(m)C(1),.^(m +1)C(1),.^(m+2)C...

    Text Solution

    |

  19. The determinant |(y^(2),-xy,x^(2)),(a,b,c),(a',b',c')| is equal to

    Text Solution

    |

  20. |(bc,bc'+b'c,b'c'),(ca,ca'+ac',c'a'),(ab,ab'+a'b,a'b')| is equal to

    Text Solution

    |