Home
Class 12
MATHS
For all values of A,B,C and P,Q,R the de...

For all values of A,B,C and P,Q,R the determinant given below
`|(cos(A-P),cos(A-Q),cos(A-R)),(cos(B-P),cos(B-Q),cos(B-R)),(cos(C-P),cos(C-Q),cos(C-R))|` is

A

`cos A cos B cos C`

B

`sin P sinQ sinR`

C

0

D

`sum sin(A+P)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} \cos(A-P) & \cos(A-Q) & \cos(A-R) \\ \cos(B-P) & \cos(B-Q) & \cos(B-R) \\ \cos(C-P) & \cos(C-Q) & \cos(C-R) \end{vmatrix} \] we will use the cosine subtraction formula, which states: \[ \cos(x - y) = \cos x \cos y + \sin x \sin y \] ### Step 1: Apply the cosine subtraction formula We can rewrite each element of the determinant using the cosine subtraction formula: - For the first row: - \(\cos(A-P) = \cos A \cos P + \sin A \sin P\) - \(\cos(A-Q) = \cos A \cos Q + \sin A \sin Q\) - \(\cos(A-R) = \cos A \cos R + \sin A \sin R\) - For the second row: - \(\cos(B-P) = \cos B \cos P + \sin B \sin P\) - \(\cos(B-Q) = \cos B \cos Q + \sin B \sin Q\) - \(\cos(B-R) = \cos B \cos R + \sin B \sin R\) - For the third row: - \(\cos(C-P) = \cos C \cos P + \sin C \sin P\) - \(\cos(C-Q) = \cos C \cos Q + \sin C \sin Q\) - \(\cos(C-R) = \cos C \cos R + \sin C \sin R\) Thus, we can express the determinant as: \[ D = \begin{vmatrix} \cos A \cos P + \sin A \sin P & \cos A \cos Q + \sin A \sin Q & \cos A \cos R + \sin A \sin R \\ \cos B \cos P + \sin B \sin P & \cos B \cos Q + \sin B \sin Q & \cos B \cos R + \sin B \sin R \\ \cos C \cos P + \sin C \sin P & \cos C \cos Q + \sin C \sin Q & \cos C \cos R + \sin C \sin R \end{vmatrix} \] ### Step 2: Factor the determinant We can factor out the common terms from each column. The determinant can be expressed as a product of two determinants: \[ D = \begin{vmatrix} \cos A & \cos A & \cos A \\ \cos B & \cos B & \cos B \\ \cos C & \cos C & \cos C \end{vmatrix} \begin{vmatrix} \sin P & \sin P & \sin P \\ \sin Q & \sin Q & \sin Q \\ \sin R & \sin R & \sin R \end{vmatrix} \] ### Step 3: Evaluate the determinants The first determinant has identical rows, hence its value is 0: \[ \begin{vmatrix} \cos A & \cos A & \cos A \\ \cos B & \cos B & \cos B \\ \cos C & \cos C & \cos C \end{vmatrix} = 0 \] Similarly, the second determinant also has identical rows, hence its value is also 0: \[ \begin{vmatrix} \sin P & \sin P & \sin P \\ \sin Q & \sin Q & \sin Q \\ \sin R & \sin R & \sin R \end{vmatrix} = 0 \] ### Conclusion Thus, the value of the original determinant \(D\) is: \[ D = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(cos(A-P),cos(A-Q),cos(A-R)),(cos(B-P),cos(B-Q),cos(B-R)),(cos(C-P),cos(C-Q),cos(C-R)):}| =0.

If A,B,C,P,Q,R in R and Delta=|(cos(A+P),cos(A+Q),cos(A+R)),(cos(B+P),cos(B+Q),cos(B+R)),(cos(C+P),cos(C+Q),cos(C+R))|

cos(-A+B+C)+cos(A-B+C)+cos(A+B-C)+cos(A+B+C)=4cos A cos B cos C

(c-b cos A)/(b-c cos A)=(cos B)/(cos C)

Prove that: cos(A+B+C)+cos(A-B+C)+cos(A+B-C)+cos(-A+B+C)=4cos A cos B cos C

If A,B,C are in A.P then (sin A-sin C)/(cos C-cos A)=

If A,B,C are the angles of a triangal ,prove that : cos A +cos B + cos C = 1+r/R

If a,b and c be in A.P. prove that cos A cot((A)/(2)),cos B cot((B)/(2)), and cos C cot((C)/(2)) are in A.P.

ML KHANNA-DETERMINANTS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. The value of the determinant |(1,cos(B-A),cos(C-A)),(cos(A-B),1,cos(...

    Text Solution

    |

  2. For all values of A,B,C and P,Q,R the determinant given below |(cos(...

    Text Solution

    |

  3. If a,b,c are the sides of a DeltaABC and A,B,C are respectively the an...

    Text Solution

    |

  4. If a,b,c and d are complex numbers, then the determinant Delta=|(2,...

    Text Solution

    |

  5. The value of the determinant Delta=|(2a1b1,a1b2+a2b1,a1b3+a3b1),(a1b...

    Text Solution

    |

  6. If Delta=|(1+alpha,1+alphax,1+ax^2),(1+beta,1+betax,1+betax^2),(1+gamm...

    Text Solution

    |

  7. If l1^2+m1^2+n1^2=1 etc. and l1l2+m1m2+n1n2=0 etc. then Delta=|(l1,m...

    Text Solution

    |

  8. If Delta1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^2,a^2),(b^2,a^2,2ab-c^2)| and ...

    Text Solution

    |

  9. If Delta^2=|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)| , then De...

    Text Solution

    |

  10. If sr=alpha^r+beta^r+gamma^r, then Delta=|(s0,s1,s2),(s1,s2,s3),(s2,s3...

    Text Solution

    |

  11. If Delta=|(py+qz,rz-px,qx+ry),(bp+cq,-ap+cr,aq+br),(mp+nq,nr-lp,lq+mr)...

    Text Solution

    |

  12. If z is a complex number and all ai 's and bi 's are real numbers, the...

    Text Solution

    |

  13. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  14. If y=sin mx the value of the determinant |{:(y,y(1),y(2)),(y(3),y(4),y...

    Text Solution

    |

  15. If F(X) , G(X) and H(X) are three polynomials of degree 2, then phi(...

    Text Solution

    |

  16. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  17. Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)| , where p is a cons...

    Text Solution

    |

  18. If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^...

    Text Solution

    |

  19. Let f(x)=|cos(x+x^2)sin(x+x^2)-cos(x+x^2)sin(x-x^2)cos(x-x^2)sin(x-x^2...

    Text Solution

    |

  20. If a,b,c be real , then determine the interval of monotonicity of the ...

    Text Solution

    |