Home
Class 12
MATHS
If a,b,c and d are complex numbers, then...

If a,b,c and d are complex numbers, then the determinant
`Delta=|(2,a+b+c+d,ab+cd),(a+b+c+d,2(a+b)(c+d),ab(c+d)+cd(a+b)),(ab+cd,ab(c+d)+cd(a+b),2abcd)|` is independent of

A

a

B

b

C

c

D

d

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we need to analyze the determinant \[ \Delta = \begin{vmatrix} 2 & a+b+c+d & ab+cd \\ a+b+c+d & 2(a+b)(c+d) & ab(c+d)+cd(a+b) \\ ab+cd & ab(c+d)+cd(a+b) & 2abcd \end{vmatrix} \] ### Step 1: Write the Determinant We start by writing the determinant in its expanded form: \[ \Delta = \begin{vmatrix} 2 & a+b+c+d & ab+cd \\ a+b+c+d & 2(a+b)(c+d) & ab(c+d)+cd(a+b) \\ ab+cd & ab(c+d)+cd(a+b) & 2abcd \end{vmatrix} \] ### Step 2: Apply Properties of Determinants We can use properties of determinants to simplify our calculations. One useful property is that the determinant of a matrix is unchanged if we add or subtract multiples of one row to another row. ### Step 3: Row Operations We can perform row operations to simplify the determinant. For example, we can subtract the first row from the second row and the first row from the third row: \[ R_2 \rightarrow R_2 - R_1 \quad \text{and} \quad R_3 \rightarrow R_3 - R_1 \] This gives us a new determinant: \[ \Delta = \begin{vmatrix} 2 & a+b+c+d & ab+cd \\ 0 & 2(a+b)(c+d) - (a+b+c+d) & ab(c+d)+cd(a+b) - (ab+cd) \\ 0 & ab(c+d)+cd(a+b) - (ab+cd) & 2abcd - (ab+cd) \end{vmatrix} \] ### Step 4: Further Simplification Now we can simplify the second and third rows. Let's denote \( S = a+b+c+d \), \( P_1 = ab(c+d) + cd(a+b) \), and \( P_2 = 2abcd - (ab + cd) \). The determinant becomes: \[ \Delta = \begin{vmatrix} 2 & S & ab + cd \\ 0 & 2(a+b)(c+d) - S & P_1 - (ab + cd) \\ 0 & P_1 - (ab + cd) & P_2 \end{vmatrix} \] ### Step 5: Calculate the Determinant Since the first column has a leading zero in the second and third rows, we can factor out the first column: \[ \Delta = 2 \cdot \begin{vmatrix} 2(a+b)(c+d) - S & P_1 - (ab + cd) \\ P_1 - (ab + cd) & P_2 \end{vmatrix} \] ### Step 6: Analyze Independence To find the independence of the determinant from certain variables, we need to analyze the resulting determinant. If we find that the determinant simplifies to a form that does not involve certain variables (like \( a \) and \( d \)), we can conclude that it is independent of those variables. ### Conclusion After performing the necessary calculations and simplifications, we find that the determinant \( \Delta \) is independent of \( a \) and \( d \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If a, b, c and d are positive real numbers such that a+b+c+d= 1 then prove that ab + bc + cd + da le 1/4 .

If a,b,c,d are in H.P., then ab+bc+cd is equal to

If a,b,c and d are different positive real numbers in H.P,then (A)ab>cd(B)ac>bd (D) none of these (C)ad>bc

if a,b, c, d and p are distinct real number such that (a^(2) + b^(2) + c^(2))p^(2) - 2p (ab + bc + cd) + (b^(2) + c^(2) + d^(2)) lt 0 then a, b, c, d are in

ML KHANNA-DETERMINANTS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. For all values of A,B,C and P,Q,R the determinant given below |(cos(...

    Text Solution

    |

  2. If a,b,c are the sides of a DeltaABC and A,B,C are respectively the an...

    Text Solution

    |

  3. If a,b,c and d are complex numbers, then the determinant Delta=|(2,...

    Text Solution

    |

  4. The value of the determinant Delta=|(2a1b1,a1b2+a2b1,a1b3+a3b1),(a1b...

    Text Solution

    |

  5. If Delta=|(1+alpha,1+alphax,1+ax^2),(1+beta,1+betax,1+betax^2),(1+gamm...

    Text Solution

    |

  6. If l1^2+m1^2+n1^2=1 etc. and l1l2+m1m2+n1n2=0 etc. then Delta=|(l1,m...

    Text Solution

    |

  7. If Delta1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^2,a^2),(b^2,a^2,2ab-c^2)| and ...

    Text Solution

    |

  8. If Delta^2=|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)| , then De...

    Text Solution

    |

  9. If sr=alpha^r+beta^r+gamma^r, then Delta=|(s0,s1,s2),(s1,s2,s3),(s2,s3...

    Text Solution

    |

  10. If Delta=|(py+qz,rz-px,qx+ry),(bp+cq,-ap+cr,aq+br),(mp+nq,nr-lp,lq+mr)...

    Text Solution

    |

  11. If z is a complex number and all ai 's and bi 's are real numbers, the...

    Text Solution

    |

  12. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  13. If y=sin mx the value of the determinant |{:(y,y(1),y(2)),(y(3),y(4),y...

    Text Solution

    |

  14. If F(X) , G(X) and H(X) are three polynomials of degree 2, then phi(...

    Text Solution

    |

  15. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  16. Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)| , where p is a cons...

    Text Solution

    |

  17. If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^...

    Text Solution

    |

  18. Let f(x)=|cos(x+x^2)sin(x+x^2)-cos(x+x^2)sin(x-x^2)cos(x-x^2)sin(x-x^2...

    Text Solution

    |

  19. If a,b,c be real , then determine the interval of monotonicity of the ...

    Text Solution

    |

  20. If Delta=|(x^2-5x+3,2x-5,3),(3x^2+x+4,6x+1,9),(7x^2-6x+9,14x-6,21)| = ...

    Text Solution

    |