Home
Class 12
MATHS
The value of the determinant Delta=|(2...

The value of the determinant
`Delta=|(2a_1b_1,a_1b_2+a_2b_1,a_1b_3+a_3b_1),(a_1b_2+a_2b_1,2a_2b_2,a_2b_3+a_3b_2),(a_1b_3+a_3b_1,a_3b_2+a_2b_3,2a_3b_3)|` is

A

1

B

`-1`

C

0

D

`a_1a_2a_3b_1b_2b_3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} 2a_1b_1 & a_1b_2 + a_2b_1 & a_1b_3 + a_3b_1 \\ a_1b_2 + a_2b_1 & 2a_2b_2 & a_2b_3 + a_3b_2 \\ a_1b_3 + a_3b_1 & a_3b_2 + a_2b_3 & 2a_3b_3 \end{vmatrix} \] we can simplify the determinant step by step. ### Step 1: Rewrite the determinant We can express the first row as: - \(2a_1b_1 = a_1b_1 + a_1b_1\) - \(a_1b_2 + a_2b_1\) remains unchanged. - \(a_1b_3 + a_3b_1 = a_1b_3 + a_3b_1\) remains unchanged. Thus, we rewrite the first row: \[ \Delta = \begin{vmatrix} a_1b_1 & a_1b_1 & a_1b_1 \\ a_1b_2 + a_2b_1 & 2a_2b_2 & a_2b_3 + a_3b_2 \\ a_1b_3 + a_3b_1 & a_3b_2 + a_2b_3 & 2a_3b_3 \end{vmatrix} \] ### Step 2: Factor out common terms Notice that the first column can be factored out: \[ \Delta = a_1 \begin{vmatrix} b_1 & b_1 & b_1 \\ a_1b_2 + a_2b_1 & 2a_2b_2 & a_2b_3 + a_3b_2 \\ a_1b_3 + a_3b_1 & a_3b_2 + a_2b_3 & 2a_3b_3 \end{vmatrix} \] ### Step 3: Check for zero rows or columns Now, we can see that if we look at the structure of the determinant, if we factor out \(b_1\) from the first column, we will have: \[ \Delta = b_1 \begin{vmatrix} 1 & 1 & 1 \\ a_1b_2 + a_2b_1 & 2a_2b_2 & a_2b_3 + a_3b_2 \\ a_1b_3 + a_3b_1 & a_3b_2 + a_2b_3 & 2a_3b_3 \end{vmatrix} \] ### Step 4: Identify zero column Now, observe that if we look at the third column, we can see that it can be expressed as a linear combination of the first two columns. This means that the determinant will collapse to zero. ### Conclusion Since one of the columns is a linear combination of the others, the determinant evaluates to: \[ \Delta = 0 \] ### Final Answer Thus, the value of the determinant \(\Delta\) is \(0\). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Let =|2a_1b_1a_1b_2+a_2b_1a_1b_3+a_3b_1a_1b_2+a_2b_1 2a_2b_2a_2b_3+a_3b_2a_1b_3+a_3b_1a_3b_2+a_2b_3 2a_3b_3| . Expressing as the product of two determinants, show that =0. Hence, show that if a x^2+2h x y+b y^2+2gx+2fy+c=(l x+m y+n)(l^(prime)x+m^(prime)y+n),t h e n|a hgh bfgfc|=0.

det[[2a_(1)b_(1),a_(1)b_(2)+a_(2)b_(1),a_(1)b_(3)+a_(3)b_(1)a_(1)b_(2)+a_(2)b_(1),2a_(2)b_(2),a_(2)b_(3)+a_(3)b_(2)a_(1)b_(3)+a_(3)b_(1),a_(3)b_(2)+a_(2)b_(3),2a_(3)b_(3)]]=

Let = |(2a_(1)b_(1),a_(1)b_(2)+a_(2)b_(1),a_(1)b_(3)+a_(3)b_(1)),(a_(1)b_(2)+a_(2)b_(1),2a_(2)b_(2),a_(2)b_(3)+a_(3)b_(2)),(a_(1)b_(3)+a_(3)b_(1),a_(3)b_(2)+a_(2)b_(3),2a_(3)b_(3))| Express the determinant D as a product of two determinants. Hence or otherwise show that D = 0.

The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is

The determinant |(b_1+c_1,c_1+a_1,a_1+b_1),(b_2+c_2,c_2+a_2,a_2+b_2),(b_3+c_3,c_3+a_3,a_3+b_3)|=

Prove that if alpha, beta, gamma !=0 then |(alpha+a_1b_1, a_1b_2, a_1b_3), (a_2b_1, beta+a_2b_2, a_2b_3), (a_3b_1, a_3b_2, gamma+a_3b_3)|=alpha beta gamma [1+(a_1b_1)/alpha + (a_2b_2)/beta+(a_3b_3)/gamma]

Suppose a_(1),a_(2),a_(3) are in A.P. and b_(1),b_(2),b_(3) are in H.P. and let Delta=|(a_(1)-b_(1),a_(1)-b_(2),a_(1)-b_(3)),(a_(2)-b_(1),a_(2)-b_(2),a_(2)-b_(3)),(a_(3)-b_(1),a_(3)-b_(2),a_(3)-b_(3))| then prove that

If a_i, b_i in N for i 1,2,3, then coefficient of x in the determinant;|((1+x)^(a_1b_1),(1+x)^(a_1b_2),(1+x)^(a_1b_3)),((1+x)^(a_2b_1),(1+x)^(a_2b_2),(1+x)^(a_2b_3)), ((1+x)^(a_3b_1),(1+x)^(a_3b_2),(1+x)^(a_3b_3))|

ML KHANNA-DETERMINANTS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If a,b,c are the sides of a DeltaABC and A,B,C are respectively the an...

    Text Solution

    |

  2. If a,b,c and d are complex numbers, then the determinant Delta=|(2,...

    Text Solution

    |

  3. The value of the determinant Delta=|(2a1b1,a1b2+a2b1,a1b3+a3b1),(a1b...

    Text Solution

    |

  4. If Delta=|(1+alpha,1+alphax,1+ax^2),(1+beta,1+betax,1+betax^2),(1+gamm...

    Text Solution

    |

  5. If l1^2+m1^2+n1^2=1 etc. and l1l2+m1m2+n1n2=0 etc. then Delta=|(l1,m...

    Text Solution

    |

  6. If Delta1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^2,a^2),(b^2,a^2,2ab-c^2)| and ...

    Text Solution

    |

  7. If Delta^2=|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)| , then De...

    Text Solution

    |

  8. If sr=alpha^r+beta^r+gamma^r, then Delta=|(s0,s1,s2),(s1,s2,s3),(s2,s3...

    Text Solution

    |

  9. If Delta=|(py+qz,rz-px,qx+ry),(bp+cq,-ap+cr,aq+br),(mp+nq,nr-lp,lq+mr)...

    Text Solution

    |

  10. If z is a complex number and all ai 's and bi 's are real numbers, the...

    Text Solution

    |

  11. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  12. If y=sin mx the value of the determinant |{:(y,y(1),y(2)),(y(3),y(4),y...

    Text Solution

    |

  13. If F(X) , G(X) and H(X) are three polynomials of degree 2, then phi(...

    Text Solution

    |

  14. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  15. Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)| , where p is a cons...

    Text Solution

    |

  16. If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^...

    Text Solution

    |

  17. Let f(x)=|cos(x+x^2)sin(x+x^2)-cos(x+x^2)sin(x-x^2)cos(x-x^2)sin(x-x^2...

    Text Solution

    |

  18. If a,b,c be real , then determine the interval of monotonicity of the ...

    Text Solution

    |

  19. If Delta=|(x^2-5x+3,2x-5,3),(3x^2+x+4,6x+1,9),(7x^2-6x+9,14x-6,21)| = ...

    Text Solution

    |

  20. If Delta=|(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| then d/(dx)(Delta)=

    Text Solution

    |