Home
Class 12
MATHS
If Delta=|(1+alpha,1+alphax,1+ax^2),(1+b...

If `Delta=|(1+alpha,1+alphax,1+ax^2),(1+beta,1+betax,1+betax^2),(1+gamma,1+gammax,1+gammax^2)|` then `Delta =`

A

0

B

`(alpha - beta)(beta-gamma)(gamma-alpha)`

C

`alpha beta gamma`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given by \[ \Delta = \begin{vmatrix} 1 + \alpha & 1 + \alpha x & 1 + \alpha x^2 \\ 1 + \beta & 1 + \beta x & 1 + \beta x^2 \\ 1 + \gamma & 1 + \gamma x & 1 + \gamma x^2 \end{vmatrix}, \] we will apply row operations to simplify the determinant. ### Step 1: Apply Row Operations We will perform the following row operations: - \( R_1 \leftarrow R_1 - R_3 \) - \( R_2 \leftarrow R_2 - R_3 \) This means we will subtract the third row from the first and second rows. ### Step 2: Calculate New Rows After performing the row operations, we get: 1. For \( R_1 \): \[ R_1 = (1 + \alpha - (1 + \gamma), 1 + \alpha x - (1 + \gamma x), 1 + \alpha x^2 - (1 + \gamma x^2)) \] Simplifying this gives: \[ R_1 = (\alpha - \gamma, \alpha - \gamma x, \alpha - \gamma x^2) \] 2. For \( R_2 \): \[ R_2 = (1 + \beta - (1 + \gamma), 1 + \beta x - (1 + \gamma x), 1 + \beta x^2 - (1 + \gamma x^2)) \] Simplifying this gives: \[ R_2 = (\beta - \gamma, \beta - \gamma x, \beta - \gamma x^2) \] The third row remains unchanged: \[ R_3 = (1 + \gamma, 1 + \gamma x, 1 + \gamma x^2) \] ### Step 3: Write the New Determinant Now the determinant looks like: \[ \Delta = \begin{vmatrix} \alpha - \gamma & \alpha - \gamma x & \alpha - \gamma x^2 \\ \beta - \gamma & \beta - \gamma x & \beta - \gamma x^2 \\ 1 + \gamma & 1 + \gamma x & 1 + \gamma x^2 \end{vmatrix} \] ### Step 4: Factor Out Common Terms Notice that: - In the first row, we can factor out \( \alpha - \gamma \). - In the second row, we can factor out \( \beta - \gamma \). Thus, we can express the determinant as: \[ \Delta = (\alpha - \gamma)(\beta - \gamma) \begin{vmatrix} 1 & 1 & 1 \\ 1 & x & x^2 \\ 1 + \gamma & 1 + \gamma x & 1 + \gamma x^2 \end{vmatrix} \] ### Step 5: Recognize Row Dependency Now, observe that the first two rows of the new determinant are linearly dependent. The first row is a constant row, while the second row is a polynomial row. Therefore, the determinant evaluates to zero: \[ \Delta = 0 \] ### Final Answer Thus, the value of the determinant \( \Delta \) is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Prove that | [1, alpha, alpha ^ 2 + betagamma], [1, beta, beta ^ 2 + gammaalpha], [1, gamma, gamma ^ 2 + alphabeta] | = 2 (alpha-beta) (beta-y ) (y-alpha)

The value of the determinant : |(1-alpha,alpha-alpha^(2),alpha^(2)),(1-beta,beta-beta^(2),beta^(2)),(1-gamma,gamma-gamma^(2),gamma^(2))| is equal to :

alpha , beta , gamma are the roots of the equation x^(3)-7x^(2)+bx+5=0 . If Delta_(1) is the area of the triangle formed by (alpha, alpha^(3)) , (beta, beta^(3)) , (gamma, gamma^(3)) , Delta_(2) is the area of the triangle formed by (alpha, alpha^(2)) , (beta, beta^(2)) , (gamma, gamma^(2)) then (Delta_(1))/(Delta_(2)) =

The value of the determinant |{:(1-alpha,alpha-alpha^(2),alpha^(@)),(1-beta,beta-beta^(2),beta^(2)),(1-gamma,gamma-gamma^(2),gamma^(2)):}| is equal to

alpha,beta,gamma are the roots of the equation x^(3)-7x^(2)+bx+5=0. If Delta_(1) is the area of the triangle formed by (alpha,alpha^(3)) , (beta,beta^(3)) , (gamma,gamma^(3)) , Delta_(2) is the area of the triangle formed by (alpha,alpha^(2)) , (beta,beta^(2)) , (gamma,gamma^(2)) then (Delta_(1))/(Delta_(2))=

If |(alpha^(2n),alpha^(2n+2),alpha^(2n+4)),(beta^(2n),beta^(2n+2),beta^(2n+4)),(gamma^(2n),gamma^(2n+2),gamma^(2n+4))|=((1)/(beta^(2))-(1)/(alpha^(2)))((1)/(gamma^(2))-(1)/(beta^(2)))((1)/(alpha^(2))-(1)/(gamma^(2))) {where alpha^(2), beta^(2) and gamma^(2) are al distinct}, then the value of n is equal to

alpha , beta , gamma are the roots of the equation x^(3)-3x^(2)+6x+1=0 . Then the centroid of the triangle whose vertices are (alpha beta,1/(alpha beta)) , (beta gamma, 1/(beta gamma)) , (gamma alpha,1/(gamma alpha)) is

If A(alpha, (1)/(alpha)), B(beta, (1)/(beta)), C(gamma,(1)/(gamma)) be the vertices of a Delta ABC , where alpha, beta are the roots of x^(2)-6ax+2=0, beta, gamma are the roots of x^(2)-6bx+3=0 and gamma, alpha are the roots of x^(2)-6cx + 6 =0 , a, b, c being positive. The coordinates of centroid of Delta ABC is

If A(alpha, (1)/(alpha)), B(beta, (1)/(beta)), C(gamma,(1)/(gamma)) be the vertices of a Delta ABC , where alpha, beta are the roots of x^(2)-6ax+2=0, beta, gamma are the roots of x^(2)-6bx+3=0 and gamma, alpha are the roots of x^(2)-6cx + 6 =0 , a, b, c being positive. The coordinates of orthocentre of Delta ABC is

Show that |[1,alpha,alpha^2],[1,beta,beta^2],[1,gamma,gamma^2]|=(alpha-beta)(beta-gamma)(gamma-alpha)

ML KHANNA-DETERMINANTS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If a,b,c and d are complex numbers, then the determinant Delta=|(2,...

    Text Solution

    |

  2. The value of the determinant Delta=|(2a1b1,a1b2+a2b1,a1b3+a3b1),(a1b...

    Text Solution

    |

  3. If Delta=|(1+alpha,1+alphax,1+ax^2),(1+beta,1+betax,1+betax^2),(1+gamm...

    Text Solution

    |

  4. If l1^2+m1^2+n1^2=1 etc. and l1l2+m1m2+n1n2=0 etc. then Delta=|(l1,m...

    Text Solution

    |

  5. If Delta1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^2,a^2),(b^2,a^2,2ab-c^2)| and ...

    Text Solution

    |

  6. If Delta^2=|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)| , then De...

    Text Solution

    |

  7. If sr=alpha^r+beta^r+gamma^r, then Delta=|(s0,s1,s2),(s1,s2,s3),(s2,s3...

    Text Solution

    |

  8. If Delta=|(py+qz,rz-px,qx+ry),(bp+cq,-ap+cr,aq+br),(mp+nq,nr-lp,lq+mr)...

    Text Solution

    |

  9. If z is a complex number and all ai 's and bi 's are real numbers, the...

    Text Solution

    |

  10. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  11. If y=sin mx the value of the determinant |{:(y,y(1),y(2)),(y(3),y(4),y...

    Text Solution

    |

  12. If F(X) , G(X) and H(X) are three polynomials of degree 2, then phi(...

    Text Solution

    |

  13. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  14. Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)| , where p is a cons...

    Text Solution

    |

  15. If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^...

    Text Solution

    |

  16. Let f(x)=|cos(x+x^2)sin(x+x^2)-cos(x+x^2)sin(x-x^2)cos(x-x^2)sin(x-x^2...

    Text Solution

    |

  17. If a,b,c be real , then determine the interval of monotonicity of the ...

    Text Solution

    |

  18. If Delta=|(x^2-5x+3,2x-5,3),(3x^2+x+4,6x+1,9),(7x^2-6x+9,14x-6,21)| = ...

    Text Solution

    |

  19. If Delta=|(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| then d/(dx)(Delta)=

    Text Solution

    |

  20. If f(x)=|(x+a^2,x^4+1,3),(x+b^2,2x^4+2,3),(x+c^2,3x^4+7,3)| where x n...

    Text Solution

    |