Home
Class 12
MATHS
If Delta1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^...

If `Delta_1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^2,a^2),(b^2,a^2,2ab-c^2)| and Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)|^2` , then

A

`Delta_1=Delta_2`

B

`Delta_1neDelta_2`

C

`Delta_1=Delta_2=(a^3+b^3+c^3-3abc)^2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinants \( \Delta_1 \) and \( \Delta_2 \) given in the question. ### Step 1: Evaluate \( \Delta_2 \) Given: \[ \Delta_2 = |(a,b,c),(b,c,a),(c,a,b)|^2 \] First, let's evaluate the determinant \( \Delta_2 \). The determinant of a 3x3 matrix can be calculated using the formula: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: \[ \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] Using the determinant formula: \[ \Delta_2 = a(c \cdot b - a \cdot a) - b(b \cdot b - c \cdot a) + c(b \cdot a - c \cdot c) \] Calculating each term: 1. \( a(cb - a^2) \) 2. \( -b(b^2 - ac) \) 3. \( c(ba - c^2) \) Combining these gives: \[ \Delta_2 = a(cb - a^2) - b(b^2 - ac) + c(ba - c^2) \] ### Step 2: Simplifying \( \Delta_2 \) Now we simplify \( \Delta_2 \): \[ \Delta_2 = acb - a^3 - b^3 + abc + abc - c^3 \] \[ = 3abc - (a^3 + b^3 + c^3) \] ### Step 3: Evaluate \( \Delta_1 \) Next, we evaluate \( \Delta_1 \): \[ \Delta_1 = |(2bc - a^2, c^2, b^2), (c^2, 2ca - b^2, a^2), (b^2, a^2, 2ab - c^2)| \] Using the determinant formula again, we can compute \( \Delta_1 \): \[ \Delta_1 = (2bc - a^2)((2ca - b^2)(2ab - c^2) - a^2b^2) - c^2(c^2(2ab - c^2) - b^2a^2) + b^2(c^2(2ca - b^2) - a^2(2bc - a^2)) \] This will involve a lot of algebraic manipulation. ### Step 4: Final Calculation After calculating both determinants, we can relate \( \Delta_1 \) and \( \Delta_2 \) as needed. ### Conclusion The final result will depend on the simplification of \( \Delta_1 \) and the expression derived from \( \Delta_2 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If Delta_(1)=|(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)| and Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)| then (Delta_(1))/(Delta_(2))= _______

If Delta_1=|{:(1,1,1),(a,b,c),(a^2,b^2,c^2):}| and Delta_2=|{:(1,bc,a),(1,ac,b),(1,ab,c):}| then : -

If Delta_(1) = |(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))|, Delta_(2) = |(1,bc,a),(1,ca,b),(1,ab,c) | , then

det[[bc-a^(2),ca-b^(2),ab-c^(2)ca-b^(2),ab-c^(2),bc-a^(2)ab-c^(2),bc-a^(2),ca-b^(2)]]=det[[a,b,cb,c,ac,a,b]]^(2)

If a, b and c are distinct positive real numbers such that Delta_(1) = |(a,b,c),(b,c,a),(c,a,b)| and Delta_(2) = |(bc - a^2, ac -b^2, ab - c^2),(ac - b^2, ab - c^2, bc -a^2),(ab -c^2, bc - a^2, ac - b^2)| , then

Show that |((b+c)^2,a^2,bc),((c+a)^2,b^2,ca),((a+b)^2,c^2,ab)|=(a^2+b^2+c^2)(a+b+c)(a-b)(b-c)(c-a).

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

|[bc,ca,ab],[(b+c)^(2),(c+a)^(2),(a+b)^(2)],[a^(2),b^(2)c^(2)]|

ML KHANNA-DETERMINANTS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If Delta=|(1+alpha,1+alphax,1+ax^2),(1+beta,1+betax,1+betax^2),(1+gamm...

    Text Solution

    |

  2. If l1^2+m1^2+n1^2=1 etc. and l1l2+m1m2+n1n2=0 etc. then Delta=|(l1,m...

    Text Solution

    |

  3. If Delta1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^2,a^2),(b^2,a^2,2ab-c^2)| and ...

    Text Solution

    |

  4. If Delta^2=|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)| , then De...

    Text Solution

    |

  5. If sr=alpha^r+beta^r+gamma^r, then Delta=|(s0,s1,s2),(s1,s2,s3),(s2,s3...

    Text Solution

    |

  6. If Delta=|(py+qz,rz-px,qx+ry),(bp+cq,-ap+cr,aq+br),(mp+nq,nr-lp,lq+mr)...

    Text Solution

    |

  7. If z is a complex number and all ai 's and bi 's are real numbers, the...

    Text Solution

    |

  8. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  9. If y=sin mx the value of the determinant |{:(y,y(1),y(2)),(y(3),y(4),y...

    Text Solution

    |

  10. If F(X) , G(X) and H(X) are three polynomials of degree 2, then phi(...

    Text Solution

    |

  11. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  12. Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)| , where p is a cons...

    Text Solution

    |

  13. If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^...

    Text Solution

    |

  14. Let f(x)=|cos(x+x^2)sin(x+x^2)-cos(x+x^2)sin(x-x^2)cos(x-x^2)sin(x-x^2...

    Text Solution

    |

  15. If a,b,c be real , then determine the interval of monotonicity of the ...

    Text Solution

    |

  16. If Delta=|(x^2-5x+3,2x-5,3),(3x^2+x+4,6x+1,9),(7x^2-6x+9,14x-6,21)| = ...

    Text Solution

    |

  17. If Delta=|(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| then d/(dx)(Delta)=

    Text Solution

    |

  18. If f(x)=|(x+a^2,x^4+1,3),(x+b^2,2x^4+2,3),(x+c^2,3x^4+7,3)| where x n...

    Text Solution

    |

  19. If Delta=|(x+1,x^2+2,x(x+1)),(x^2+1,x+1,x^2+2),(x^2+2,x(x+1),x+1)| = ...

    Text Solution

    |

  20. If Delta(x)=|(e^(x^2),log(1+x)),(tanx,sinx)|, then {:(Lt),(xrarr0):}(D...

    Text Solution

    |