Home
Class 12
MATHS
If F(X) , G(X) and H(X) are three polyno...

If F(X) , G(X) and H(X) are three polynomials of degree 2, then
`phi(x)=|(F(X),G(X),H(X)),(F'(X),G'(X),H'(X)),(F''(X),G''(X),H''(X))|` is a polynomial of degree

A

2

B

3

C

4

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the determinant given by: \[ \phi(x) = \begin{vmatrix} F(X) & G(X) & H(X) \\ F'(X) & G'(X) & H'(X) \\ F''(X) & G''(X) & H''(X) \end{vmatrix} \] where \( F(X), G(X), H(X) \) are polynomials of degree 2. ### Step 1: Understanding the Polynomials Since \( F(X), G(X), H(X) \) are polynomials of degree 2, we can express them in the general form: \[ F(X) = aX^2 + bX + c, \quad G(X) = dX^2 + eX + f, \quad H(X) = gX^2 + hX + i \] where \( a, b, c, d, e, f, g, h, i \) are constants. ### Step 2: Finding the Derivatives Next, we find the first and second derivatives of these polynomials: - The first derivatives are: \[ F'(X) = 2aX + b, \quad G'(X) = 2dX + e, \quad H'(X) = 2gX + h \] - The second derivatives are: \[ F''(X) = 2a, \quad G''(X) = 2d, \quad H''(X) = 2g \] ### Step 3: Constructing the Determinant Now, we can substitute these expressions into the determinant: \[ \phi(x) = \begin{vmatrix} aX^2 + bX + c & dX^2 + eX + f & gX^2 + hX + i \\ 2aX + b & 2dX + e & 2gX + h \\ 2a & 2d & 2g \end{vmatrix} \] ### Step 4: Evaluating the Determinant To evaluate the determinant, we can use properties of determinants. Specifically, if two rows of a determinant are identical, the determinant is zero. 1. Notice that the first row is a polynomial of degree 2, the second row is a polynomial of degree 1, and the third row is a constant (degree 0). 2. If we differentiate the determinant with respect to \( X \), we will find that the first and second rows will eventually lead to a row of zeros. ### Step 5: Conclusion Since the determinant evaluates to zero, this implies that \( \phi(x) \) must be a constant function. Therefore, the degree of \( \phi(x) \) is 0. ### Final Answer The degree of the polynomial \( \phi(x) \) is **0**. ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If f(x), g(x), h(x) are polynomials of three degree, then phi(x)=|(f'(x),g'(x),h'(x)), (f''(x),g''(x),h''(x)), (f'''(x),g'''(x),h'''(x))| is a polynomial of degree (where f^n (x) represents nth derivative of f(x))

If f(x) g(x) and h(x) are three polynomials of degree 2 and Delta = |( f(x), g(x), h(x)), (f'(x), g'(x), h'(x)), (f''(x), g''(x), h''(x))| then Delta(x) is a polynomial of degree (dashes denote the differentiation).

If f(x),g(x) andh (x) are three polynomial of degree 2, then prove that f(x)g(x)h(x)f'(x)g'(xh'(x)f''(x)g''(x)h''(x)| is a constant polynomial.

"Prove that "phi(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}| is a constant polynomial.

If f(x) and g(x) are polynomial functions of x, then domain of (f(x))/(g(x)) is

If f(x),g(x)a n dh(x) are three polynomials of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l

If f(x) and g(x) are non- periodic functions, then h(x)=f(g(x))is

If f(x) and g(x) are non-periodic functions, then h(x)=f(g(x)) is

If f(x),g(x),h(x) are polynomials in x of degree 2 If F(x)=det[[f',g,hf',g',h'f'',g'',h'']] then F'(x) is

ML KHANNA-DETERMINANTS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If l1^2+m1^2+n1^2=1 etc. and l1l2+m1m2+n1n2=0 etc. then Delta=|(l1,m...

    Text Solution

    |

  2. If Delta1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^2,a^2),(b^2,a^2,2ab-c^2)| and ...

    Text Solution

    |

  3. If Delta^2=|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)| , then De...

    Text Solution

    |

  4. If sr=alpha^r+beta^r+gamma^r, then Delta=|(s0,s1,s2),(s1,s2,s3),(s2,s3...

    Text Solution

    |

  5. If Delta=|(py+qz,rz-px,qx+ry),(bp+cq,-ap+cr,aq+br),(mp+nq,nr-lp,lq+mr)...

    Text Solution

    |

  6. If z is a complex number and all ai 's and bi 's are real numbers, the...

    Text Solution

    |

  7. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  8. If y=sin mx the value of the determinant |{:(y,y(1),y(2)),(y(3),y(4),y...

    Text Solution

    |

  9. If F(X) , G(X) and H(X) are three polynomials of degree 2, then phi(...

    Text Solution

    |

  10. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  11. Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)| , where p is a cons...

    Text Solution

    |

  12. If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^...

    Text Solution

    |

  13. Let f(x)=|cos(x+x^2)sin(x+x^2)-cos(x+x^2)sin(x-x^2)cos(x-x^2)sin(x-x^2...

    Text Solution

    |

  14. If a,b,c be real , then determine the interval of monotonicity of the ...

    Text Solution

    |

  15. If Delta=|(x^2-5x+3,2x-5,3),(3x^2+x+4,6x+1,9),(7x^2-6x+9,14x-6,21)| = ...

    Text Solution

    |

  16. If Delta=|(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| then d/(dx)(Delta)=

    Text Solution

    |

  17. If f(x)=|(x+a^2,x^4+1,3),(x+b^2,2x^4+2,3),(x+c^2,3x^4+7,3)| where x n...

    Text Solution

    |

  18. If Delta=|(x+1,x^2+2,x(x+1)),(x^2+1,x+1,x^2+2),(x^2+2,x(x+1),x+1)| = ...

    Text Solution

    |

  19. If Delta(x)=|(e^(x^2),log(1+x)),(tanx,sinx)|, then {:(Lt),(xrarr0):}(D...

    Text Solution

    |

  20. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |