Home
Class 12
MATHS
Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,...

Let `f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)|` , where p is a constant .Then `d^3/(dx^3) ` [f(x)] at x = 0 is

A

p

B

`p+p^2`

C

`p+p^3`

D

independent of p

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the third derivative of the function \( f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} \) at \( x = 0 \). ### Step 1: Calculate the Determinant \( f(x) \) We will calculate the determinant using the method of cofactor expansion along the first row. \[ f(x) = x^3 \begin{vmatrix} -1 & 0 \\ p^2 & p^3 \end{vmatrix} - \sin x \begin{vmatrix} 6 & 0 \\ p & p^3 \end{vmatrix} + \cos x \begin{vmatrix} 6 & -1 \\ p & p^2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 0 \\ p^2 & p^3 \end{vmatrix} = (-1)(p^3) - (0)(p^2) = -p^3 \) 2. \( \begin{vmatrix} 6 & 0 \\ p & p^3 \end{vmatrix} = (6)(p^3) - (0)(p) = 6p^3 \) 3. \( \begin{vmatrix} 6 & -1 \\ p & p^2 \end{vmatrix} = (6)(p^2) - (-1)(p) = 6p^2 + p \) Now substituting these back into the determinant: \[ f(x) = x^3 (-p^3) - \sin x (6p^3) + \cos x (6p^2 + p) \] This simplifies to: \[ f(x) = -p^3 x^3 - 6p^3 \sin x + (6p^2 + p) \cos x \] ### Step 2: Differentiate \( f(x) \) Three Times Now we need to differentiate \( f(x) \) three times with respect to \( x \). 1. **First Derivative:** \[ f'(x) = -3p^3 x^2 - 6p^3 \cos x + (6p^2 + p)(-\sin x) \] 2. **Second Derivative:** \[ f''(x) = -6p^3 x - 6p^3 (-\sin x) - (6p^2 + p)(\cos x) \] Simplifying gives: \[ f''(x) = -6p^3 x + 6p^3 \sin x - (6p^2 + p) \cos x \] 3. **Third Derivative:** \[ f'''(x) = -6p^3 + 6p^3 \cos x - (6p^2 + p)(-\sin x) \] This simplifies to: \[ f'''(x) = -6p^3 + 6p^3 \cos x + (6p^2 + p) \sin x \] ### Step 3: Evaluate \( f'''(0) \) Now we substitute \( x = 0 \): \[ f'''(0) = -6p^3 + 6p^3 \cos(0) + (6p^2 + p) \sin(0) \] Since \( \cos(0) = 1 \) and \( \sin(0) = 0 \): \[ f'''(0) = -6p^3 + 6p^3 \cdot 1 + (6p^2 + p) \cdot 0 \] This simplifies to: \[ f'''(0) = -6p^3 + 6p^3 = 0 \] ### Final Answer Thus, the value of \( \frac{d^3}{dx^3} f(x) \) at \( x = 0 \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|[x^3,sinx,cosx],[6,-1, 0],[p, p^2,p^3]|,w h e r ep is a constant. Then (d^3)/(dx^3)(f(x)) at x=0 is (a)p (b) p-p^3 (c)p+p^3 (d) independent of p

Consider the function f(x) = |(x^3,sinx,cosx),(6,-1,0),(p,p^2,p^3)|, where p is constant. What is the value of f'(0) ? What is the value of p for which f''(0)=0

If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}| , where p is a constant, then (d^(3))/(dx^(3))(f(x)) , is

Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(3)):}| , where p is a constant. What is the value of f'(0) ?

Consider the function f(x)=|{:(x^(3),sinx,cosx),(6,-1,0),(p,p^2,p^(3)):}| where p is a constant. What is the value of p for which f''(0)=0 ?

Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(3)):}| , where p is a constant. What is the value of p for which f''(0) = 0 ?

Consider the function f(x)=|{:(x^(3),sinx,cosx),(6,-1,0),(p,p,p^(3)):}| where p is a constant. What is the value of f'(0) ?

If p is a constant and f(x) =|(x^2,x^3,x^4),(2,3,6),(p,p^2,p^3)| if f'(x)=0 have roots alpha,beta , then

ML KHANNA-DETERMINANTS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If l1^2+m1^2+n1^2=1 etc. and l1l2+m1m2+n1n2=0 etc. then Delta=|(l1,m...

    Text Solution

    |

  2. If Delta1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^2,a^2),(b^2,a^2,2ab-c^2)| and ...

    Text Solution

    |

  3. If Delta^2=|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)| , then De...

    Text Solution

    |

  4. If sr=alpha^r+beta^r+gamma^r, then Delta=|(s0,s1,s2),(s1,s2,s3),(s2,s3...

    Text Solution

    |

  5. If Delta=|(py+qz,rz-px,qx+ry),(bp+cq,-ap+cr,aq+br),(mp+nq,nr-lp,lq+mr)...

    Text Solution

    |

  6. If z is a complex number and all ai 's and bi 's are real numbers, the...

    Text Solution

    |

  7. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  8. If y=sin mx the value of the determinant |{:(y,y(1),y(2)),(y(3),y(4),y...

    Text Solution

    |

  9. If F(X) , G(X) and H(X) are three polynomials of degree 2, then phi(...

    Text Solution

    |

  10. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  11. Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)| , where p is a cons...

    Text Solution

    |

  12. If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^...

    Text Solution

    |

  13. Let f(x)=|cos(x+x^2)sin(x+x^2)-cos(x+x^2)sin(x-x^2)cos(x-x^2)sin(x-x^2...

    Text Solution

    |

  14. If a,b,c be real , then determine the interval of monotonicity of the ...

    Text Solution

    |

  15. If Delta=|(x^2-5x+3,2x-5,3),(3x^2+x+4,6x+1,9),(7x^2-6x+9,14x-6,21)| = ...

    Text Solution

    |

  16. If Delta=|(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| then d/(dx)(Delta)=

    Text Solution

    |

  17. If f(x)=|(x+a^2,x^4+1,3),(x+b^2,2x^4+2,3),(x+c^2,3x^4+7,3)| where x n...

    Text Solution

    |

  18. If Delta=|(x+1,x^2+2,x(x+1)),(x^2+1,x+1,x^2+2),(x^2+2,x(x+1),x+1)| = ...

    Text Solution

    |

  19. If Delta(x)=|(e^(x^2),log(1+x)),(tanx,sinx)|, then {:(Lt),(xrarr0):}(D...

    Text Solution

    |

  20. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |