Home
Class 12
MATHS
If a,b,c be real , then determine the in...

If a,b,c be real , then determine the interval of monotonicity of the function
`f(x)=|(x+a^2,ab,ac),(ab,x+b^2,bc),(ac,bc,x+c^2)|`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the interval of monotonicity of the function \[ f(x) = \begin{vmatrix} x + a^2 & ab & ac \\ ab & x + b^2 & bc \\ ac & bc & x + c^2 \end{vmatrix} \] we need to follow these steps: ### Step 1: Calculate the Determinant We start by calculating the determinant \( f(x) \). Using the properties of determinants, we can simplify the calculation by performing row operations. We can multiply the first row by \( A \), the second row by \( B \), and the third row by \( C \) and then divide the entire determinant by \( ABC \): \[ f(x) = \frac{1}{ABC} \begin{vmatrix} A(x + a^2) & A(ab) & A(ac) \\ B(ab) & B(x + b^2) & B(bc) \\ C(ac) & C(bc) & C(x + c^2) \end{vmatrix} \] ### Step 2: Simplifying the Determinant After performing the row operations, we can express the determinant as: \[ f(x) = \begin{vmatrix} x + a^2 & ab & ac \\ ab & x + b^2 & bc \\ ac & bc & x + c^2 \end{vmatrix} \] ### Step 3: Expand the Determinant Next, we expand the determinant using the cofactor expansion along the first row: \[ f(x) = (x + a^2) \begin{vmatrix} x + b^2 & bc \\ bc & x + c^2 \end{vmatrix} - ab \begin{vmatrix} ab & ac \\ ac & x + c^2 \end{vmatrix} + ac \begin{vmatrix} ab & x + b^2 \\ ac & bc \end{vmatrix} \] ### Step 4: Calculate Each Minor Calculating each of the minors, we find: 1. For the first minor: \[ \begin{vmatrix} x + b^2 & bc \\ bc & x + c^2 \end{vmatrix} = (x + b^2)(x + c^2) - b^2c^2 \] 2. For the second minor: \[ \begin{vmatrix} ab & ac \\ ac & x + c^2 \end{vmatrix} = ab(x + c^2) - a^2bc \] 3. For the third minor: \[ \begin{vmatrix} ab & x + b^2 \\ ac & bc \end{vmatrix} = abc - ac(x + b^2) \] ### Step 5: Combine and Simplify Combining these results, we can express \( f(x) \) in a more manageable form. After simplification, we will have: \[ f(x) = k(x + a^2 + b^2 + c^2)(x^2 + px + q) \] where \( k \) is a constant and \( p, q \) are expressions involving \( a, b, c \). ### Step 6: Find the Derivative To determine the intervals of monotonicity, we need to find the derivative \( f'(x) \): \[ f'(x) = k(3x^2 + 2px + p) \] ### Step 7: Set the Derivative to Zero To find critical points, we set \( f'(x) = 0 \): \[ 3x^2 + 2px + q = 0 \] ### Step 8: Analyze the Roots Using the quadratic formula, we find the roots: \[ x = \frac{-2p \pm \sqrt{(2p)^2 - 4 \cdot 3 \cdot q}}{2 \cdot 3} \] ### Step 9: Determine Intervals of Increasing and Decreasing Using the roots, we can analyze the sign of \( f'(x) \) in the intervals defined by these roots. - If \( f'(x) > 0 \), then \( f(x) \) is increasing. - If \( f'(x) < 0 \), then \( f(x) \) is decreasing. ### Final Result The intervals of monotonicity can be summarized as follows: - **Increasing**: \( (-\infty, r_1) \cup (r_2, \infty) \) - **Decreasing**: \( (r_1, r_2) \) where \( r_1 \) and \( r_2 \) are the roots found in Step 8.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are real numbers, then find the intervals in which : f(x)=|(x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))| is strictly increasing or decreasing.

What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

if a,b,c are real then find the intervial in which f(x)=|{:(x+a^2,ab,ac),(ab,x+b^2,bc),(ac,bc,x+c^2):}| is decreasing.

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

Prove that: |(a^2+1, ab, ac),(ab, b^2+1, bc),(ac, bc, c^2+1)|=1+a^2+b^2+c^2

f(x)=det[[x+a^(2),ab,acab,x+b^(2),bcab,bc,x+c^(2)]], find f'(x)

One factor of |(a^(2) + x,ab,ac),(ab,b^(2) + x,cb),(ca,cb,c^(2) + x)| , is

ML KHANNA-DETERMINANTS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If l1^2+m1^2+n1^2=1 etc. and l1l2+m1m2+n1n2=0 etc. then Delta=|(l1,m...

    Text Solution

    |

  2. If Delta1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^2,a^2),(b^2,a^2,2ab-c^2)| and ...

    Text Solution

    |

  3. If Delta^2=|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)| , then De...

    Text Solution

    |

  4. If sr=alpha^r+beta^r+gamma^r, then Delta=|(s0,s1,s2),(s1,s2,s3),(s2,s3...

    Text Solution

    |

  5. If Delta=|(py+qz,rz-px,qx+ry),(bp+cq,-ap+cr,aq+br),(mp+nq,nr-lp,lq+mr)...

    Text Solution

    |

  6. If z is a complex number and all ai 's and bi 's are real numbers, the...

    Text Solution

    |

  7. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  8. If y=sin mx the value of the determinant |{:(y,y(1),y(2)),(y(3),y(4),y...

    Text Solution

    |

  9. If F(X) , G(X) and H(X) are three polynomials of degree 2, then phi(...

    Text Solution

    |

  10. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  11. Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)| , where p is a cons...

    Text Solution

    |

  12. If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^...

    Text Solution

    |

  13. Let f(x)=|cos(x+x^2)sin(x+x^2)-cos(x+x^2)sin(x-x^2)cos(x-x^2)sin(x-x^2...

    Text Solution

    |

  14. If a,b,c be real , then determine the interval of monotonicity of the ...

    Text Solution

    |

  15. If Delta=|(x^2-5x+3,2x-5,3),(3x^2+x+4,6x+1,9),(7x^2-6x+9,14x-6,21)| = ...

    Text Solution

    |

  16. If Delta=|(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| then d/(dx)(Delta)=

    Text Solution

    |

  17. If f(x)=|(x+a^2,x^4+1,3),(x+b^2,2x^4+2,3),(x+c^2,3x^4+7,3)| where x n...

    Text Solution

    |

  18. If Delta=|(x+1,x^2+2,x(x+1)),(x^2+1,x+1,x^2+2),(x^2+2,x(x+1),x+1)| = ...

    Text Solution

    |

  19. If Delta(x)=|(e^(x^2),log(1+x)),(tanx,sinx)|, then {:(Lt),(xrarr0):}(D...

    Text Solution

    |

  20. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |