Home
Class 12
MATHS
If Delta=|(x^2-5x+3,2x-5,3),(3x^2+x+4,6x...

If `Delta=|(x^2-5x+3,2x-5,3),(3x^2+x+4,6x+1,9),(7x^2-6x+9,14x-6,21)| = ax^3+bx^2+cx+d` then `Delta` i.e. `d/(dx)(Delta)` =

A

6

B

5

C

4

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( \Delta \) given by: \[ \Delta = \begin{vmatrix} x^2 - 5x + 3 & 2x - 5 & 3 \\ 3x^2 + x + 4 & 6x + 1 & 9 \\ 7x^2 - 6x + 9 & 14x - 6 & 21 \end{vmatrix} \] and then find the derivative \( \frac{d}{dx}(\Delta) \). ### Step 1: Set up the determinant We have the determinant as follows: \[ \Delta = \begin{vmatrix} x^2 - 5x + 3 & 2x - 5 & 3 \\ 3x^2 + x + 4 & 6x + 1 & 9 \\ 7x^2 - 6x + 9 & 14x - 6 & 21 \end{vmatrix} \] ### Step 2: Perform row operations To simplify the calculation, we can perform row operations. We will subtract appropriate multiples of the first row from the second and third rows. 1. For the second row \( R_2 \), we will perform the operation \( R_2 - 3R_1 \): \[ R_2 = (3x^2 + x + 4) - 3(x^2 - 5x + 3) \] This simplifies to: \[ R_2 = (3x^2 + x + 4 - 3x^2 + 15x - 9) = (16x - 5) \] The second element becomes \( 6x + 1 - 3(2x - 5) = 6x + 1 - 6x + 15 = 16 \), and the last element becomes \( 9 - 9 = 0 \). 2. For the third row \( R_3 \), we perform the operation \( R_3 - 7R_1 \): \[ R_3 = (7x^2 - 6x + 9) - 7(x^2 - 5x + 3) \] This simplifies to: \[ R_3 = (7x^2 - 6x + 9 - 7x^2 + 35x - 21) = (29x - 12) \] The second element becomes \( 14x - 6 - 7(2x - 5) = 14x - 6 - 14x + 35 = 29 \), and the last element becomes \( 21 - 21 = 0 \). Now the determinant becomes: \[ \Delta = \begin{vmatrix} x^2 - 5x + 3 & 2x - 5 & 3 \\ 16x - 5 & 16 & 0 \\ 29x - 12 & 29 & 0 \end{vmatrix} \] ### Step 3: Expand the determinant Since the last column consists of zeros, we can expand along the third column: \[ \Delta = 3 \cdot \begin{vmatrix} 16x - 5 & 16 \\ 29x - 12 & 29 \end{vmatrix} \] Calculating the 2x2 determinant: \[ = 3 \cdot ((16x - 5) \cdot 29 - (29x - 12) \cdot 16) \] Expanding this gives: \[ = 3 \cdot (464x - 145 - 464x + 192) = 3 \cdot (192 - 145) = 3 \cdot 47 = 141 \] ### Step 4: Find the derivative Now we need to find \( \frac{d}{dx}(\Delta) \): Since \( \Delta = 141 \) is a constant, its derivative is: \[ \frac{d}{dx}(\Delta) = 0 \] ### Final Answer Thus, the final answer is: \[ \frac{d}{dx}(\Delta) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If Delta (x) =|{:(x^(2)-5x+3,2x-5,3),(3x^(2)+x+4,6x+1,9),(7x^(2)-6x+9,14x-6,21):}| = ax^(3) +bx^(2)+cx+d , then

If Delta(x)=|{:(x^2+4x-3,2x+4,13),(2x^2+5x-9,4x+5,26),(8x^2-6x+1,16x-6,104):}|=ax^3+bx^2+cx+d then

|x^(2)-5x+32x-53x^(2)+x+46x+197x^(2)-6x+914x-621=ax^(3)+bx^(2)+cx+d then which of the following are correct? (a) a=0 (b) b=0(cc=0 (d) d=0

Let D(x)=|{:(x^2+4x-3, 2x+4,13),(2x^2+5x-9,4x+5,26),(8x^2-16x+1, 16x-6, 104):}|=alphax^3+betax^2 + gammax+delta then :

Let |(x,2,x),(x^(2),x,6),(x,x,6)| = ax^(4) + bx^(3) + cx^(2) + dx + e Then, the value of 5a + 4b + 3c + 2d + e is equal to

6(3x+2)-5(6x-1)=3(x-8)-5(7x-6)+9x

ML KHANNA-DETERMINANTS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If l1^2+m1^2+n1^2=1 etc. and l1l2+m1m2+n1n2=0 etc. then Delta=|(l1,m...

    Text Solution

    |

  2. If Delta1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^2,a^2),(b^2,a^2,2ab-c^2)| and ...

    Text Solution

    |

  3. If Delta^2=|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)| , then De...

    Text Solution

    |

  4. If sr=alpha^r+beta^r+gamma^r, then Delta=|(s0,s1,s2),(s1,s2,s3),(s2,s3...

    Text Solution

    |

  5. If Delta=|(py+qz,rz-px,qx+ry),(bp+cq,-ap+cr,aq+br),(mp+nq,nr-lp,lq+mr)...

    Text Solution

    |

  6. If z is a complex number and all ai 's and bi 's are real numbers, the...

    Text Solution

    |

  7. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  8. If y=sin mx the value of the determinant |{:(y,y(1),y(2)),(y(3),y(4),y...

    Text Solution

    |

  9. If F(X) , G(X) and H(X) are three polynomials of degree 2, then phi(...

    Text Solution

    |

  10. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  11. Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)| , where p is a cons...

    Text Solution

    |

  12. If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^...

    Text Solution

    |

  13. Let f(x)=|cos(x+x^2)sin(x+x^2)-cos(x+x^2)sin(x-x^2)cos(x-x^2)sin(x-x^2...

    Text Solution

    |

  14. If a,b,c be real , then determine the interval of monotonicity of the ...

    Text Solution

    |

  15. If Delta=|(x^2-5x+3,2x-5,3),(3x^2+x+4,6x+1,9),(7x^2-6x+9,14x-6,21)| = ...

    Text Solution

    |

  16. If Delta=|(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| then d/(dx)(Delta)=

    Text Solution

    |

  17. If f(x)=|(x+a^2,x^4+1,3),(x+b^2,2x^4+2,3),(x+c^2,3x^4+7,3)| where x n...

    Text Solution

    |

  18. If Delta=|(x+1,x^2+2,x(x+1)),(x^2+1,x+1,x^2+2),(x^2+2,x(x+1),x+1)| = ...

    Text Solution

    |

  19. If Delta(x)=|(e^(x^2),log(1+x)),(tanx,sinx)|, then {:(Lt),(xrarr0):}(D...

    Text Solution

    |

  20. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |