Home
Class 12
MATHS
If f(x)=|(x+a^2,x^4+1,3),(x+b^2,2x^4+2,3...

If `f(x)=|(x+a^2,x^4+1,3),(x+b^2,2x^4+2,3),(x+c^2,3x^4+7,3)|` where `x ne 0` and f' (x) = 0 then `a^2,b^2,c^2` are in

A

A.P.

B

G.P.

C

H.P.

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the determinant given by the function \( f(x) = \begin{vmatrix} x + a^2 & x^4 + 1 & 3 \\ x + b^2 & 2x^4 + 2 & 3 \\ x + c^2 & 3x^4 + 7 & 3 \end{vmatrix} \) and find the conditions under which the derivative \( f'(x) = 0 \) leads to \( a^2, b^2, c^2 \) being in an arithmetic progression (AP). ### Step-by-step Solution: 1. **Evaluate the Determinant**: We will simplify the determinant by performing row operations. We can subtract the first row from the second and third rows: \[ R_2 \rightarrow R_2 - R_1 \quad \text{and} \quad R_3 \rightarrow R_3 - R_1 \] This gives us: \[ f(x) = \begin{vmatrix} x + a^2 & x^4 + 1 & 3 \\ b^2 - a^2 & x^4 + 1 & 0 \\ c^2 - a^2 & 2x^4 + 6 & 0 \end{vmatrix} \] 2. **Expand the Determinant**: Since the last column has zeros, we can expand along the third column: \[ f(x) = 3 \begin{vmatrix} b^2 - a^2 & x^4 + 1 \\ c^2 - a^2 & 2x^4 + 6 \end{vmatrix} \] 3. **Calculate the 2x2 Determinant**: The 2x2 determinant is calculated as follows: \[ = (b^2 - a^2)(2x^4 + 6) - (c^2 - a^2)(x^4 + 1) \] Expanding this gives: \[ = 2(b^2 - a^2)x^4 + 6(b^2 - a^2) - (c^2 - a^2)x^4 - (c^2 - a^2) \] Combining like terms: \[ = (2b^2 - 2a^2 - c^2 + a^2)x^4 + 6(b^2 - a^2) - (c^2 - a^2) \] Simplifying further: \[ = (2b^2 - c^2 - a^2)x^4 + 5(b^2 - a^2) + a^2 - c^2 \] 4. **Differentiate \( f(x) \)**: Now we differentiate \( f(x) \) with respect to \( x \): \[ f'(x) = 3 \left( (2b^2 - c^2 - a^2) \cdot 4x^3 + 5(b^2 - a^2) \cdot 0 \right) \] Thus, \[ f'(x) = 12(2b^2 - c^2 - a^2)x^3 \] 5. **Set the Derivative to Zero**: Since \( f'(x) = 0 \), we have: \[ 12(2b^2 - c^2 - a^2)x^3 = 0 \] Given \( x \neq 0 \), we can simplify this to: \[ 2b^2 - c^2 - a^2 = 0 \] 6. **Rearranging the Equation**: Rearranging gives: \[ 2b^2 = a^2 + c^2 \] This is the condition for \( a^2, b^2, c^2 \) to be in arithmetic progression (AP). ### Conclusion: Thus, we conclude that \( a^2, b^2, c^2 \) are in AP.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If f (x) = (x ^(2) - 3x +4)/(x ^(2)+ 3x +4), then complete solution of 0lt f (x) lt 1, is :

If f_r(x),g_r(x),h_r(x),r=1,2,3 are differentiable function and y=|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))| then dy/dx= |(f\'_1(x), g\'_1(x), h\'_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))|+ |(f_1(x), g_1(x), h_1(x)), (f\'_2(x), g\'_2(x), h\'_2(x)),(f_3(x), g_3(x), h_3(x))|+|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f\'_3(x), g\'_3(x), h\'_3(x))| On the basis of above information, answer the following question: Let f(x)=|(x^4, cosx, sinx),(24, 0, 1),(a, a^2, a^3)| , where a is a constant Then at x= pi/2, d^4/dx^4{f(x)} is (A) 0 (B) a (C) a+a^3 (D) a+a^4

If f(x)=|[3,2,1],[6x^(2),2x^(3),x^(4)],[1,a,a^(2)]| ,then f''(a)= is

" 2" f(x)=4x^(4)-3x^(3)-2x^(2)+x-7,g(x)=x-1

If f (x) = (2x + 3 sin x )/(3x + 2 sin x ) , x ne 0 is continous at x = 0 then f (0) = ?

If f(x)=x^(3)+3x^(2)-2x+4, find f(-2)+f(2)-f(0)

If : f((x^(2)+1)/(x))=(x^(4)+1)/(x^(2))," where "xne0," then: "f'(3)=

ML KHANNA-DETERMINANTS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If l1^2+m1^2+n1^2=1 etc. and l1l2+m1m2+n1n2=0 etc. then Delta=|(l1,m...

    Text Solution

    |

  2. If Delta1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^2,a^2),(b^2,a^2,2ab-c^2)| and ...

    Text Solution

    |

  3. If Delta^2=|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)| , then De...

    Text Solution

    |

  4. If sr=alpha^r+beta^r+gamma^r, then Delta=|(s0,s1,s2),(s1,s2,s3),(s2,s3...

    Text Solution

    |

  5. If Delta=|(py+qz,rz-px,qx+ry),(bp+cq,-ap+cr,aq+br),(mp+nq,nr-lp,lq+mr)...

    Text Solution

    |

  6. If z is a complex number and all ai 's and bi 's are real numbers, the...

    Text Solution

    |

  7. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  8. If y=sin mx the value of the determinant |{:(y,y(1),y(2)),(y(3),y(4),y...

    Text Solution

    |

  9. If F(X) , G(X) and H(X) are three polynomials of degree 2, then phi(...

    Text Solution

    |

  10. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  11. Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)| , where p is a cons...

    Text Solution

    |

  12. If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^...

    Text Solution

    |

  13. Let f(x)=|cos(x+x^2)sin(x+x^2)-cos(x+x^2)sin(x-x^2)cos(x-x^2)sin(x-x^2...

    Text Solution

    |

  14. If a,b,c be real , then determine the interval of monotonicity of the ...

    Text Solution

    |

  15. If Delta=|(x^2-5x+3,2x-5,3),(3x^2+x+4,6x+1,9),(7x^2-6x+9,14x-6,21)| = ...

    Text Solution

    |

  16. If Delta=|(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| then d/(dx)(Delta)=

    Text Solution

    |

  17. If f(x)=|(x+a^2,x^4+1,3),(x+b^2,2x^4+2,3),(x+c^2,3x^4+7,3)| where x n...

    Text Solution

    |

  18. If Delta=|(x+1,x^2+2,x(x+1)),(x^2+1,x+1,x^2+2),(x^2+2,x(x+1),x+1)| = ...

    Text Solution

    |

  19. If Delta(x)=|(e^(x^2),log(1+x)),(tanx,sinx)|, then {:(Lt),(xrarr0):}(D...

    Text Solution

    |

  20. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |