Home
Class 12
MATHS
If Delta=|(x+1,x^2+2,x(x+1)),(x^2+1,x+1,...

If `Delta=|(x+1,x^2+2,x(x+1)),(x^2+1,x+1,x^2+2),(x^2+2,x(x+1),x+1)| = p_0x^(6) +p_1x^(5) +p_2x^(4)+p_3x^3+p_4x^2+p_5x+p_6` then `(p_5,p_6)` =

A

(-3,-7)

B

(-5,9)

C

(-3,-5)

D

(-3,7)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} x+1 & x^2+2 & x(x+1) \\ x^2+1 & x+1 & x^2+2 \\ x^2+2 & x(x+1) & x+1 \end{vmatrix} \] We want to express this determinant as a polynomial of the form: \[ \Delta = p_0 x^6 + p_1 x^5 + p_2 x^4 + p_3 x^3 + p_4 x^2 + p_5 x + p_6 \] and find the coefficients \(p_5\) and \(p_6\). ### Step 1: Calculate \(p_6\) To find \(p_6\), we substitute \(x = 0\) into the determinant: \[ \Delta(0) = \begin{vmatrix} 0+1 & 0^2+2 & 0(0+1) \\ 0^2+1 & 0+1 & 0^2+2 \\ 0^2+2 & 0(0+1) & 0+1 \end{vmatrix} \] This simplifies to: \[ \Delta(0) = \begin{vmatrix} 1 & 2 & 0 \\ 1 & 1 & 2 \\ 2 & 0 & 1 \end{vmatrix} \] Now we can calculate this determinant using the formula for a \(3 \times 3\) determinant: \[ \Delta(0) = 1 \cdot \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} + 0 \] Calculating the smaller determinants: \[ \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot 0 = 1 \] \[ \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot 2 = 1 - 4 = -3 \] Putting it all together: \[ \Delta(0) = 1 \cdot 1 - 2 \cdot (-3) = 1 + 6 = 7 \] Thus, \(p_6 = 7\). ### Step 2: Calculate \(p_5\) To find \(p_5\), we differentiate the determinant with respect to \(x\) and then substitute \(x = 0\): \[ \Delta' = \frac{d}{dx} \begin{vmatrix} x+1 & x^2+2 & x(x+1) \\ x^2+1 & x+1 & x^2+2 \\ x^2+2 & x(x+1) & x+1 \end{vmatrix} \] Using the property of determinants, we differentiate the first row: \[ \Delta' = \begin{vmatrix} 1 & 2x & (x+1) + x \\ x^2+1 & x+1 & x^2+2 \\ x^2+2 & x(x+1) & x+1 \end{vmatrix} + \begin{vmatrix} x+1 & 2 & x(x+1) \\ x^2+1 & 1 & x^2+2 \\ x^2+2 & x(x+1) & x+1 \end{vmatrix} + \begin{vmatrix} x+1 & x^2+2 & (x+1) \\ x^2+1 & x+1 & 2 \\ x^2+2 & (x+1) & 0 \end{vmatrix} \] Now we substitute \(x = 0\) into the differentiated determinant: Calculating the first determinant at \(x = 0\): \[ \Delta'(0) = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 2 & 0 & 1 \end{vmatrix} \] Calculating this determinant: \[ = 1 \cdot \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} - 0 + 0 = 1 \cdot 1 = 1 \] Calculating the second determinant at \(x = 0\): \[ = \begin{vmatrix} 1 & 2 & 0 \\ 1 & 1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 7 \text{ (as calculated previously)} \] Calculating the third determinant at \(x = 0\): \[ = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 2 & 0 & 0 \end{vmatrix} = 0 \] Thus, we have: \[ \Delta'(0) = 1 + 7 + 0 = 8 \] So, \(p_5 = 8\). ### Final Result The values of \(p_5\) and \(p_6\) are: \[ (p_5, p_6) = (8, 7) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

p(x)=4x^(5)-3x^(4)-5x^(3)+x^(2)-8, then find p(-1)

int ( x +2)/( 2x ^(2) + 6x + 5) dx = p int ( 4x +6)/( 2x ^(2) + 6x +5) dx + (1)/(2) int (1)/( 2x ^(2) + 6x + 5) dx then p

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: (i) p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2 (ii) p(x) = x^4 - 3x^2 + 4x - 5, g(x) = x^2 + 1 - x (iii) p(x) = x^4 - 5x + 6, g(x) = 2 - x^2

ML KHANNA-DETERMINANTS -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If l1^2+m1^2+n1^2=1 etc. and l1l2+m1m2+n1n2=0 etc. then Delta=|(l1,m...

    Text Solution

    |

  2. If Delta1=|(2bc-a^2,c^2,b^2),(c^2,2ca-b^2,a^2),(b^2,a^2,2ab-c^2)| and ...

    Text Solution

    |

  3. If Delta^2=|(b^2+c^2,ab,ac),(ab,c^2+a^2,bc),(ac,bc,a^2+b^2)| , then De...

    Text Solution

    |

  4. If sr=alpha^r+beta^r+gamma^r, then Delta=|(s0,s1,s2),(s1,s2,s3),(s2,s3...

    Text Solution

    |

  5. If Delta=|(py+qz,rz-px,qx+ry),(bp+cq,-ap+cr,aq+br),(mp+nq,nr-lp,lq+mr)...

    Text Solution

    |

  6. If z is a complex number and all ai 's and bi 's are real numbers, the...

    Text Solution

    |

  7. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  8. If y=sin mx the value of the determinant |{:(y,y(1),y(2)),(y(3),y(4),y...

    Text Solution

    |

  9. If F(X) , G(X) and H(X) are three polynomials of degree 2, then phi(...

    Text Solution

    |

  10. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  11. Let f(x) =|(x^3, sinx,cosx),(6,-1,0),(p,p^2,p^3)| , where p is a cons...

    Text Solution

    |

  12. If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^...

    Text Solution

    |

  13. Let f(x)=|cos(x+x^2)sin(x+x^2)-cos(x+x^2)sin(x-x^2)cos(x-x^2)sin(x-x^2...

    Text Solution

    |

  14. If a,b,c be real , then determine the interval of monotonicity of the ...

    Text Solution

    |

  15. If Delta=|(x^2-5x+3,2x-5,3),(3x^2+x+4,6x+1,9),(7x^2-6x+9,14x-6,21)| = ...

    Text Solution

    |

  16. If Delta=|(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| then d/(dx)(Delta)=

    Text Solution

    |

  17. If f(x)=|(x+a^2,x^4+1,3),(x+b^2,2x^4+2,3),(x+c^2,3x^4+7,3)| where x n...

    Text Solution

    |

  18. If Delta=|(x+1,x^2+2,x(x+1)),(x^2+1,x+1,x^2+2),(x^2+2,x(x+1),x+1)| = ...

    Text Solution

    |

  19. If Delta(x)=|(e^(x^2),log(1+x)),(tanx,sinx)|, then {:(Lt),(xrarr0):}(D...

    Text Solution

    |

  20. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |