Home
Class 12
MATHS
If |(e^x,sinx),(cosx,loge(1+x^2))|=p+qx+...

If `|(e^x,sinx),(cosx,log_e(1+x^2))|=p+qx+rx^2+.....` then p =...... and q = …….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( |(e^x, \sin x), (\cos x, \log_e(1+x^2))| \) and express it in the form \( p + qx + rx^2 + \ldots \), we will follow these steps: ### Step 1: Calculate the Determinant The determinant of a 2x2 matrix \( |(a, b), (c, d)| \) is given by the formula: \[ ad - bc \] For our case, we have: - \( a = e^x \) - \( b = \sin x \) - \( c = \cos x \) - \( d = \log_e(1+x^2) \) Thus, the determinant becomes: \[ D = e^x \cdot \log_e(1+x^2) - \sin x \cdot \cos x \] ### Step 2: Expand the Determinant We need to expand \( D \) around \( x = 0 \) to find the coefficients \( p \) and \( q \). We will use Taylor series expansions for \( e^x \), \( \sin x \), \( \cos x \), and \( \log_e(1+x^2) \). 1. **Taylor Series Expansions**: - \( e^x = 1 + x + \frac{x^2}{2} + O(x^3) \) - \( \sin x = x - \frac{x^3}{6} + O(x^5) \) - \( \cos x = 1 - \frac{x^2}{2} + O(x^4) \) - \( \log_e(1+x^2) = x^2 - \frac{x^4}{4} + O(x^6) \) ### Step 3: Substitute the Expansions Substituting these expansions into the determinant \( D \): \[ D = (1 + x + \frac{x^2}{2}) \cdot (x^2 - \frac{x^4}{4}) - (x - \frac{x^3}{6})(1 - \frac{x^2}{2}) \] ### Step 4: Simplify the Expression Expanding the first term: \[ (1 + x + \frac{x^2}{2})(x^2 - \frac{x^4}{4}) = x^2 + x^3 + \frac{x^4}{2} - \frac{x^4}{4} - \frac{x^5}{4} - \frac{x^6}{8} \] Combining like terms gives: \[ x^2 + x^3 + \frac{x^4}{4} - \frac{x^5}{4} + O(x^6) \] Now expanding the second term: \[ (x - \frac{x^3}{6})(1 - \frac{x^2}{2}) = x - \frac{x^3}{6} - \frac{x^3}{2} + O(x^5) = x - \left(\frac{1}{6} + \frac{1}{2}\right)x^3 + O(x^5) = x - \frac{2}{3}x^3 + O(x^5) \] ### Step 5: Combine Both Parts Now, we combine both parts: \[ D = (x^2 + x^3 + \frac{x^4}{4} - \frac{x^5}{4}) - (x - \frac{2}{3}x^3) \] This simplifies to: \[ D = -x + x^2 + \left(1 + \frac{2}{3}\right)x^3 + \frac{x^4}{4} - \frac{x^5}{4} + O(x^6) \] Thus, we have: \[ D = -x + x^2 + \frac{5}{3}x^3 + \frac{x^4}{4} + O(x^5) \] ### Step 6: Identify Coefficients From the expression \( D = p + qx + rx^2 + \ldots \): - The constant term \( p = 0 \) - The coefficient of \( x \) is \( q = -1 \) ### Final Answers Thus, we have: - \( p = 0 \) - \( q = -1 \)
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (MULTIPLE CHOICE QUESTIONS) |20 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE)|3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If Delta(x)=|((e^x,sin2x,tanx^2)),((In(1+x),cosx,sinx)),((cosx^2,e^x-1,sinx^2))|=A+Bx+Cx^2+.... then B is equal to

If Delta(x)=|((e^x,sin2x,tanx^2)),((In(1+x),cosx,sinx)),((cosx^2,e^x-1,sinx^2))|=A+Bx+Cx^2+.... then B is equal to

lim_(x rarr 0) (1+sinx-cosx+log_e(1-x))/x^2

e^(x)((cosx-sinx)/(sin^(2)x))

lim_(x rarr0)sinx/log_(e)(1+x)^(1/2)

If y=(e^(2x)cosx)/(x sinx),then(dy)/(dx) =

If y=e^(x)(cosx+sinx)," then "y_(2)-2y_(1)=

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

∫e^x (Cosx + Sinx) dx