Home
Class 12
MATHS
Let alpha , beta be the roots of the equ...

Let `alpha , beta` be the roots of the equation `ax^2 +bx+c=0` . Let `S_(n) = alpha^(n)+beta^(n)` for `ngt1`.Let `Delta=|(3,1+s_1,1+s_2),(1+s_1,1+s_2,1+s_3),(1+s_2,1+s_3,1+s_4)|`
Then `Delta =……`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant \( \Delta \) given by: \[ \Delta = \begin{vmatrix} 3 & 1 + S_1 & 1 + S_2 \\ 1 + S_1 & 1 + S_2 & 1 + S_3 \\ 1 + S_2 & 1 + S_3 & 1 + S_4 \end{vmatrix} \] where \( S_n = \alpha^n + \beta^n \) and \( \alpha, \beta \) are the roots of the quadratic equation \( ax^2 + bx + c = 0 \). ### Step 1: Find \( S_1 \) and \( S_2 \) Using the properties of the roots of a quadratic equation, we know: - \( S_1 = \alpha + \beta = -\frac{b}{a} \) - \( S_2 = \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = S_1^2 - 2\frac{c}{a} \) Thus, we can express \( S_2 \) as: \[ S_2 = \left(-\frac{b}{a}\right)^2 - 2\frac{c}{a} = \frac{b^2}{a^2} - 2\frac{c}{a} \] ### Step 2: Find \( S_3 \) and \( S_4 \) Using the recurrence relation for \( S_n \): \[ S_n = \left(\alpha + \beta\right) S_{n-1} - \alpha\beta S_{n-2} \] we can find \( S_3 \) and \( S_4 \): \[ S_3 = S_1 S_2 - \alpha\beta S_1 = \left(-\frac{b}{a}\right) S_2 - \frac{c}{a} S_1 \] Substituting \( S_1 \) and \( S_2 \): \[ S_3 = -\frac{b}{a} \left(\frac{b^2}{a^2} - 2\frac{c}{a}\right) - \frac{c}{a} \left(-\frac{b}{a}\right) \] This simplifies to: \[ S_3 = -\frac{b^3}{a^3} + 2\frac{bc}{a^2} + \frac{bc}{a^2} = -\frac{b^3}{a^3} + 3\frac{bc}{a^2} \] Continuing this process, we can find \( S_4 \): \[ S_4 = S_1 S_3 - \alpha\beta S_2 = \left(-\frac{b}{a}\right) S_3 - \frac{c}{a} S_2 \] ### Step 3: Substitute \( S_1, S_2, S_3, S_4 \) into the determinant Now we can substitute \( S_1, S_2, S_3, S_4 \) into the determinant \( \Delta \): \[ \Delta = \begin{vmatrix} 3 & 1 - \frac{b}{a} & 1 + \left(\frac{b^2}{a^2} - 2\frac{c}{a}\right) \\ 1 - \frac{b}{a} & 1 + \left(\frac{b^2}{a^2} - 2\frac{c}{a}\right) & 1 + S_3 \\ 1 + \left(\frac{b^2}{a^2} - 2\frac{c}{a}\right) & 1 + S_3 & 1 + S_4 \end{vmatrix} \] ### Step 4: Calculate the determinant Now we will calculate the determinant using the properties of determinants. The determinant can be calculated using row operations or cofactor expansion. ### Final Step: Simplify the determinant After performing the calculations, we will arrive at a simplified expression for \( \Delta \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (MULTIPLE CHOICE QUESTIONS) |20 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE)|3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE)|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Let alpha,beta , be the roots of the equation x^2+x-1=0 . Let S_n=alpha^n+beta^n "for" n ge 1 . Evaluate the determinant |{:(3,1+s_1,1+s_2),(1+s_1,1+s_2,1+s_3),(1+s_2,1+s_3,1+s_4):}|

Let alpha and beta be the roots of the equation 5x^2 + 6x-2 =0 if S_(n ) = alpha ^(n) + beta^(n) , n= 1,2,3 ..,, then :

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n), then a S_(n+1)+cS_(n)-1)=

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

If alpha and beta are the roots of the equation ax^(2)+bx+b=0 and S_(n)=alpha^(n)+beta^(n), then aS_(n+1)+bS_(n)+cS_(n-1)=

If alpha,beta are the roots of the equation, x^(2)-x-1=0 and S_(n)=2023 alpha^(n)+2024 beta^(n) ,then 2S_(12)=S_(11)+S_(10)

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) then evaluate det[[3,1+s_(1),=alpha^(n)+beta^(n)3,1+s_(1),+s_(2)1+s_(1),1+s_(2),1+s_(3)1+s_(2),1+s_(3),1+s_(4)]]