Home
Class 12
MATHS
Given x = cy + bz, y = az + cx, z = bx +...

Given `x = cy + bz`, `y = az + cx`, `z = bx + ay` where `x, y, z` are not all zero, then `a^2+b^2+c^2+2abc=`

A

0

B

1

C

2

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given by the equations \( x = cy + bz \), \( y = az + cx \), and \( z = bx + ay \), we will express these equations in matrix form and find the determinant to derive the required expression. ### Step-by-Step Solution: 1. **Rewrite the equations**: We start with the given equations: \[ x - cy - bz = 0 \quad (1) \] \[ -cx + y - az = 0 \quad (2) \] \[ -bx - ay + z = 0 \quad (3) \] 2. **Formulate the matrix**: We can express the system of equations in matrix form as follows: \[ \begin{bmatrix} 1 & -c & -b \\ -c & 1 & -a \\ -b & -a & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] 3. **Calculate the determinant**: We need to find the determinant of the matrix: \[ D = \begin{vmatrix} 1 & -c & -b \\ -c & 1 & -a \\ -b & -a & 1 \end{vmatrix} \] We can calculate the determinant using cofactor expansion: \[ D = 1 \cdot \begin{vmatrix} 1 & -a \\ -a & 1 \end{vmatrix} - (-c) \cdot \begin{vmatrix} -c & -a \\ -b & 1 \end{vmatrix} - (-b) \cdot \begin{vmatrix} -c & 1 \\ -b & -a \end{vmatrix} \] Now calculating each of these 2x2 determinants: \[ \begin{vmatrix} 1 & -a \\ -a & 1 \end{vmatrix} = 1 \cdot 1 - (-a)(-a) = 1 - a^2 \] \[ \begin{vmatrix} -c & -a \\ -b & 1 \end{vmatrix} = (-c)(1) - (-a)(-b) = -c - ab \] \[ \begin{vmatrix} -c & 1 \\ -b & -a \end{vmatrix} = (-c)(-a) - (1)(-b) = ac + b \] Substituting these back into the determinant: \[ D = 1(1 - a^2) + c(c + ab) + b(ac + b) \] \[ = 1 - a^2 + c^2 + abc + abc + b^2 \] \[ = 1 - a^2 + b^2 + c^2 + 2abc \] 4. **Set the determinant to zero**: Since \( x, y, z \) are not all zero, the determinant must equal zero: \[ 1 - a^2 + b^2 + c^2 + 2abc = 0 \] 5. **Rearranging the equation**: We can rearrange this to find the expression we need: \[ a^2 + b^2 + c^2 + 2abc = 1 \] ### Final Answer: Thus, the value of \( a^2 + b^2 + c^2 + 2abc \) is equal to 1.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE)|3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (FILL IN THE BLANKS )|5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Given x = cy +bz, y = az + cx, z = bx+ ay where x,y and z are not all zero, then a^2 + b^2 + c^2 + 2abc = ___________

Given , x=cy+bz , y=az+cx , z=bx+ay , where x,y,z are not all zero , prove that a^2+b^2+c^2+2ab=1

If =cy+bz,y=az+cx,z=x+ay, wherex ,yx=cy+bz,y=az+cx,z=x+ay, wherex ,y are not all zeros,then find the value of a^(2)+b^(2)+c^(2)+2abc

Given a=x/(y-z),b=y/(z-x), and c=z/(x-y), where x,y,z and are not all zero,then the value of ab+bc+ca is 0 b.1 c.-1 none of these

Let a, x, y, z be real numbers satisfying the equations ax+ay=z x+ay=z x+ay=az, where x, y, z are not all zero, then the number of the possible values of a is

If planes x- cy - bz =0 , cx-y+az =0 and bx + ay - z=0 pass through a staight line the a^(2) +b^(2) +c^(2)=

If the equations x = ay +z, y = az+x and z = ax + y+(ane0) are consistent having a non-trivial solution, then a^2 +3= ....

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

ML KHANNA-DETERMINANTS -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. If the three equations are consistent (a+1)^3x+(a+2)^3y=(a+3)^3 (a...

    Text Solution

    |

  2. The value of a for which the system of equations a^3x+(a+1)^3y+(a+2)...

    Text Solution

    |

  3. If the system of linear equations. x +4ay+az=0 x+ 3by +bz=0 x+...

    Text Solution

    |

  4. If a=x/(y-z),b=y/(z-x) and c = z/(x-y) where x,y,z are not all zero , ...

    Text Solution

    |

  5. Given x = cy + bz, y = az + cx, z = bx + ay where x, y, z are not all ...

    Text Solution

    |

  6. x+ ay = 0, y + az=0, z+ ax=0 The value of a for which the system of eq...

    Text Solution

    |

  7. If the system of equations x= a(y+z), y=b(z + x), z=c(x + y),(a,b,cne ...

    Text Solution

    |

  8. If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + ...

    Text Solution

    |

  9. If ane p , b ne q , c ne r and |(p,b,c),(a,q,c),(a,b,r)|=0 , then p/(...

    Text Solution

    |

  10. If x,y,z are not all zeros and ax+ y +z=0, x+by +z=0, x + y + cz=0 th...

    Text Solution

    |

  11. If the equations x + ay – z=0,2x -y + az=0 and ax + y + 2z=0 are consi...

    Text Solution

    |

  12. If the equations ax+by + cz=0, bx + cy + az=0 and cx + ay + bz=0 have ...

    Text Solution

    |

  13. If the equations (b + c) x+(c+a) y +(a+b)z =0, cx+ay+bz=0, ax+by+cz=...

    Text Solution

    |

  14. If a gt b gt c and the system of equtions ax +by +by +cz =0,n bx +cy+a...

    Text Solution

    |

  15. If the system of equations x – ky – z = 0, kx – y – z=0, x + y – z = 0...

    Text Solution

    |

  16. The number of values of k for which the system of equations (k+1) x+...

    Text Solution

    |

  17. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |

  18. The system of equations lamdax+y +z=1, x+lamday+z=lamda and x+y+lamdaz...

    Text Solution

    |

  19. 2x - y - 2z=2, x-2y+z=-4, x+y + lamdaz=4 then the value of lamda such...

    Text Solution

    |

  20. A line AB in three-dimensional space makes angles 45^@ and 120^@ with...

    Text Solution

    |