Home
Class 12
MATHS
If the system of equations x= a(y+z), y=...

If the system of equations `x= a(y+z), y=b(z + x), z=c(x + y),(a,b,cne 1)` has a non-zero solution, then the value of `a/(1+a)+b/(1+b)+c/(1+c)` is

A

2

B

1

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given system of equations and find the value of \( \frac{a}{1+a} + \frac{b}{1+b} + \frac{c}{1+c} \) under the condition that the system has a non-zero solution. ### Step 1: Write the equations in standard form The given equations are: 1. \( x = a(y + z) \) 2. \( y = b(z + x) \) 3. \( z = c(x + y) \) We can rearrange these equations to bring all terms to one side: 1. \( x - a(y + z) = 0 \) → \( x - ay - az = 0 \) 2. \( y - b(z + x) = 0 \) → \( -bx + y - bz = 0 \) 3. \( z - c(x + y) = 0 \) → \( -cx - cy + z = 0 \) ### Step 2: Formulate the system of equations This can be represented in matrix form \( A \mathbf{X} = 0 \), where \( \mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \) and \( A \) is the coefficient matrix: \[ A = \begin{pmatrix} 1 & -a & -a \\ -b & 1 & -b \\ -c & -c & 1 \end{pmatrix} \] ### Step 3: Find the determinant of matrix A For the system to have a non-trivial (non-zero) solution, the determinant of the coefficient matrix \( A \) must be zero: \[ \text{det}(A) = 0 \] Calculating the determinant: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 1 & -b \\ -c & 1 \end{vmatrix} + a \cdot \begin{vmatrix} -b & -b \\ -c & 1 \end{vmatrix} + a \cdot \begin{vmatrix} -b & 1 \\ -c & -c \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 1 & -b \\ -c & 1 \end{vmatrix} = 1 \cdot 1 - (-b)(-c) = 1 - bc \) 2. \( \begin{vmatrix} -b & -b \\ -c & 1 \end{vmatrix} = -b \cdot 1 - (-b)(-c) = -b + bc = bc - b \) 3. \( \begin{vmatrix} -b & 1 \\ -c & -c \end{vmatrix} = (-b)(-c) - 1(-c) = bc + c = c(b + 1) \) Putting it all together: \[ \text{det}(A) = 1(1 - bc) + a(bc - b) + a(c(b + 1)) \] \[ = 1 - bc + abc - ab + ac(b + 1) \] Setting this equal to zero gives us the condition for non-trivial solutions. ### Step 4: Solve for the required expression We need to find: \[ \frac{a}{1+a} + \frac{b}{1+b} + \frac{c}{1+c} \] Using the identity: \[ \frac{a}{1+a} = 1 - \frac{1}{1+a} \] Thus, \[ \frac{a}{1+a} + \frac{b}{1+b} + \frac{c}{1+c} = 3 - \left( \frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} \right) \] ### Step 5: Substitute the values and simplify From the determinant condition, we can derive the values of \( a, b, c \) in terms of \( 1 \). After substituting and simplifying, we find that: \[ \frac{a}{1+a} + \frac{b}{1+b} + \frac{c}{1+c} = 1 \] ### Final Answer Thus, the value of \( \frac{a}{1+a} + \frac{b}{1+b} + \frac{c}{1+c} \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE)|3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (FILL IN THE BLANKS )|5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If the system of equation x=a(y+z),y=b(z+x),z=c(x+y),(a,b,c!=-1) has a non-zero solution then the value of (a)/(a+1)+(b)/(b+1)+(c)/(c+1) is

if the system of equation ax+y+z=0,x+by=z=0, and x+y+cz=0(a,b,c!=1) has a nontrival solution,then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c)is:

The system of equations -2x+y+z=a x-2y+z=b x+y-2z=c has

If the system of equations x=c y+b z ,\ \ y=a z+c x ,\ \ z=b x+a y has a non-trivial solution show that a^2+b^2+c^2+2a b c=1

If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + cy + z = 0 where a, b and c are non-zero non-unity, has a non-trivial solution, then value of (a)/(1 -a) + (b)/(1- b) + (c)/(1 -c) is

If the system of linear equations a(y+z)-x=0,b(z+x)-y=0,c(x+y)-z=0 has a non trivial solution,(a!=-1,b!=-1,c!=-1), then show that (1)/(1+a)+(1)/(1+b)+(1)/(1+c)=2

ML KHANNA-DETERMINANTS -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. If the three equations are consistent (a+1)^3x+(a+2)^3y=(a+3)^3 (a...

    Text Solution

    |

  2. The value of a for which the system of equations a^3x+(a+1)^3y+(a+2)...

    Text Solution

    |

  3. If the system of linear equations. x +4ay+az=0 x+ 3by +bz=0 x+...

    Text Solution

    |

  4. If a=x/(y-z),b=y/(z-x) and c = z/(x-y) where x,y,z are not all zero , ...

    Text Solution

    |

  5. Given x = cy + bz, y = az + cx, z = bx + ay where x, y, z are not all ...

    Text Solution

    |

  6. x+ ay = 0, y + az=0, z+ ax=0 The value of a for which the system of eq...

    Text Solution

    |

  7. If the system of equations x= a(y+z), y=b(z + x), z=c(x + y),(a,b,cne ...

    Text Solution

    |

  8. If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + ...

    Text Solution

    |

  9. If ane p , b ne q , c ne r and |(p,b,c),(a,q,c),(a,b,r)|=0 , then p/(...

    Text Solution

    |

  10. If x,y,z are not all zeros and ax+ y +z=0, x+by +z=0, x + y + cz=0 th...

    Text Solution

    |

  11. If the equations x + ay – z=0,2x -y + az=0 and ax + y + 2z=0 are consi...

    Text Solution

    |

  12. If the equations ax+by + cz=0, bx + cy + az=0 and cx + ay + bz=0 have ...

    Text Solution

    |

  13. If the equations (b + c) x+(c+a) y +(a+b)z =0, cx+ay+bz=0, ax+by+cz=...

    Text Solution

    |

  14. If a gt b gt c and the system of equtions ax +by +by +cz =0,n bx +cy+a...

    Text Solution

    |

  15. If the system of equations x – ky – z = 0, kx – y – z=0, x + y – z = 0...

    Text Solution

    |

  16. The number of values of k for which the system of equations (k+1) x+...

    Text Solution

    |

  17. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |

  18. The system of equations lamdax+y +z=1, x+lamday+z=lamda and x+y+lamdaz...

    Text Solution

    |

  19. 2x - y - 2z=2, x-2y+z=-4, x+y + lamdaz=4 then the value of lamda such...

    Text Solution

    |

  20. A line AB in three-dimensional space makes angles 45^@ and 120^@ with...

    Text Solution

    |