Home
Class 12
MATHS
If x,y,z are not all zeros and ax+ y +z...

If x,y,z are not all zeros and `ax+ y +z=0, x+by +z=0, x + y + cz=0` then `1/(1-a)+1/(1-b)+(1)/(1-c)=`

A

1

B

`-1`

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \) given the equations: 1. \( ax + y + z = 0 \) 2. \( x + by + z = 0 \) 3. \( x + y + cz = 0 \) where \( x, y, z \) are not all zero. ### Step 1: Set up the determinant We can represent the system of equations in matrix form as follows: \[ \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \] This determinant must equal zero because the system has non-trivial solutions (not all \( x, y, z \) are zero). ### Step 2: Calculate the determinant Expanding the determinant using the first row: \[ D = a \begin{vmatrix} b & 1 \\ 1 & c \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & c \end{vmatrix} + 1 \begin{vmatrix} 1 & b \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} b & 1 \\ 1 & c \end{vmatrix} = bc - 1 \) 2. \( \begin{vmatrix} 1 & 1 \\ 1 & c \end{vmatrix} = c - 1 \) 3. \( \begin{vmatrix} 1 & b \\ 1 & 1 \end{vmatrix} = 1 - b \) Substituting these back into the determinant: \[ D = a(bc - 1) - (c - 1) + (1 - b) \] Simplifying this, we have: \[ D = abc - a - c + 1 + 1 - b = abc - a - b - c + 2 \] Setting this equal to zero gives us: \[ abc - a - b - c + 2 = 0 \implies abc = a + b + c - 2 \] ### Step 3: Find \( \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \) Now, we need to compute: \[ \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \] Finding a common denominator: \[ \frac{(1-b)(1-c) + (1-a)(1-c) + (1-a)(1-b)}{(1-a)(1-b)(1-c)} \] ### Step 4: Expand the numerator Expanding the numerator: 1. \( (1-b)(1-c) = 1 - b - c + bc \) 2. \( (1-a)(1-c) = 1 - a - c + ac \) 3. \( (1-a)(1-b) = 1 - a - b + ab \) Adding these together: \[ (1 - b - c + bc) + (1 - a - c + ac) + (1 - a - b + ab) \] Combining like terms: \[ 3 - 2(a + b + c) + (ab + ac + bc) \] ### Step 5: Substitute \( abc = a + b + c - 2 \) Substituting \( abc = a + b + c - 2 \) into the denominator: \[ (1-a)(1-b)(1-c) = 1 - (a + b + c) + (ab + ac + bc) - abc \] Substituting \( abc \): \[ = 1 - (a + b + c) + (ab + ac + bc) - (a + b + c - 2) \] This simplifies to: \[ = 3 - (a + b + c) + (ab + ac + bc) \] ### Step 6: Final result Thus, we have: \[ \frac{3 - 2(a + b + c) + (ab + ac + bc)}{3 - (a + b + c) + (ab + ac + bc)} = 1 \] So, the final answer is: \[ \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE)|3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (FILL IN THE BLANKS )|5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS) |5 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If x,y,z are not all zero such that ax+y+z=0,x+by+z=0x+y+cz=0 then prove that (1)/(1-a)+(1)/(1-b)+(1)/(1-c)=1

If x ,\ y , z are not all zero and if a x+b y+c z=0; b x+c y+a z=0; c x+a y+b z=0 Prove that x : y : z=1:1:1\ or\ 1:omega:omega^2or\ 1:omega^2:omegadot

If x,y,z are not all zero & if ax+by+cz=0,bx+cy+az=0&cx+ay+bz=0, then prove that x:y:z=1:1:1OR1:omega:omega^(2)OR1:omega^(2):omega, where omega is one ofthe complex cube root of unity.

If x ,y ,z are different from zero and "Delta"=|[a, b-y ,c-z],[ a-x, b ,c-z],[ a-x, b-y, c]|=0, then the value of the expression a/x+b/y+c/z is 0 b. -1 c. 1 d. 2

If x,y,z not all zeros and equations x+y+z=0,(1+a)x+(2+a)y-8z=0,x-(1+a)y+(2+a)z= have non trivial solution then a

Suppose x,y,z=0 and are not equal to 1 and log x+log y+log z=0. Find the value of (1)/(x^(log y))+(1)/(log z)quad (1)/(y^(log z))+(1)/(log x)quad (1)/(z^(log x))+(1)/(log y)

If x , y , z are different from zero and |[1+x,1, 1],[1 , 1+y ,1],[ 1 ,1, 1+z]|=0 then the value of x^(-1)+y^(-1)+z^(-1) is (a) x y z (b) x^(-1)y^(-1)z^(-1) (c) -x-y-z (d) -1

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

If the system of linear equations a(y+z)-x=0,b(z+x)-y=0,c(x+y)-z=0 has a non trivial solution,(a!=-1,b!=-1,c!=-1), then show that (1)/(1+a)+(1)/(1+b)+(1)/(1+c)=2

ML KHANNA-DETERMINANTS -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. If the three equations are consistent (a+1)^3x+(a+2)^3y=(a+3)^3 (a...

    Text Solution

    |

  2. The value of a for which the system of equations a^3x+(a+1)^3y+(a+2)...

    Text Solution

    |

  3. If the system of linear equations. x +4ay+az=0 x+ 3by +bz=0 x+...

    Text Solution

    |

  4. If a=x/(y-z),b=y/(z-x) and c = z/(x-y) where x,y,z are not all zero , ...

    Text Solution

    |

  5. Given x = cy + bz, y = az + cx, z = bx + ay where x, y, z are not all ...

    Text Solution

    |

  6. x+ ay = 0, y + az=0, z+ ax=0 The value of a for which the system of eq...

    Text Solution

    |

  7. If the system of equations x= a(y+z), y=b(z + x), z=c(x + y),(a,b,cne ...

    Text Solution

    |

  8. If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + ...

    Text Solution

    |

  9. If ane p , b ne q , c ne r and |(p,b,c),(a,q,c),(a,b,r)|=0 , then p/(...

    Text Solution

    |

  10. If x,y,z are not all zeros and ax+ y +z=0, x+by +z=0, x + y + cz=0 th...

    Text Solution

    |

  11. If the equations x + ay – z=0,2x -y + az=0 and ax + y + 2z=0 are consi...

    Text Solution

    |

  12. If the equations ax+by + cz=0, bx + cy + az=0 and cx + ay + bz=0 have ...

    Text Solution

    |

  13. If the equations (b + c) x+(c+a) y +(a+b)z =0, cx+ay+bz=0, ax+by+cz=...

    Text Solution

    |

  14. If a gt b gt c and the system of equtions ax +by +by +cz =0,n bx +cy+a...

    Text Solution

    |

  15. If the system of equations x – ky – z = 0, kx – y – z=0, x + y – z = 0...

    Text Solution

    |

  16. The number of values of k for which the system of equations (k+1) x+...

    Text Solution

    |

  17. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |

  18. The system of equations lamdax+y +z=1, x+lamday+z=lamda and x+y+lamdaz...

    Text Solution

    |

  19. 2x - y - 2z=2, x-2y+z=-4, x+y + lamdaz=4 then the value of lamda such...

    Text Solution

    |

  20. A line AB in three-dimensional space makes angles 45^@ and 120^@ with...

    Text Solution

    |