Home
Class 12
MATHS
There is no solution for the equations ...

There is no solution for the equations
`x + 4y - 2z=3`
`3x + y + 5z = 7`
` 2x+3y +z=5 `. True or False.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the given system of equations has no solution, we will analyze the system using determinants. The equations are: 1. \( x + 4y - 2z = 3 \) 2. \( 3x + y + 5z = 7 \) 3. \( 2x + 3y + z = 5 \) ### Step 1: Formulate the Coefficient Matrix and the Constant Matrix The coefficient matrix \( A \) and the constant matrix \( B \) can be represented as follows: \[ A = \begin{bmatrix} 1 & 4 & -2 \\ 3 & 1 & 5 \\ 2 & 3 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 \\ 7 \\ 5 \end{bmatrix} \] ### Step 2: Calculate the Determinant of the Coefficient Matrix \( \Delta \) To check for no solution, we calculate the determinant \( \Delta \) of the coefficient matrix \( A \): \[ \Delta = \begin{vmatrix} 1 & 4 & -2 \\ 3 & 1 & 5 \\ 2 & 3 & 1 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix, we expand along the first row: \[ \Delta = 1 \cdot \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} - 4 \cdot \begin{vmatrix} 3 & 5 \\ 2 & 1 \end{vmatrix} - 2 \cdot \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} = (1)(1) - (5)(3) = 1 - 15 = -14 \) 2. \( \begin{vmatrix} 3 & 5 \\ 2 & 1 \end{vmatrix} = (3)(1) - (5)(2) = 3 - 10 = -7 \) 3. \( \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} = (3)(3) - (1)(2) = 9 - 2 = 7 \) Now substituting back into the determinant calculation: \[ \Delta = 1 \cdot (-14) - 4 \cdot (-7) - 2 \cdot (7) \] \[ = -14 + 28 - 14 = 0 \] ### Step 3: Calculate the Determinants \( \Delta_1, \Delta_2, \Delta_3 \) Next, we need to calculate \( \Delta_1, \Delta_2, \Delta_3 \) to check for the conditions of no solution. **For \( \Delta_1 \)** (replace the first column with constants): \[ \Delta_1 = \begin{vmatrix} 3 & 4 & -2 \\ 7 & 1 & 5 \\ 5 & 3 & 1 \end{vmatrix} \] Expanding \( \Delta_1 \): \[ \Delta_1 = 3 \cdot \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} - 4 \cdot \begin{vmatrix} 7 & 5 \\ 5 & 1 \end{vmatrix} - 2 \cdot \begin{vmatrix} 7 & 1 \\ 5 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} = -14 \) 2. \( \begin{vmatrix} 7 & 5 \\ 5 & 1 \end{vmatrix} = (7)(1) - (5)(5) = 7 - 25 = -18 \) 3. \( \begin{vmatrix} 7 & 1 \\ 5 & 3 \end{vmatrix} = (7)(3) - (1)(5) = 21 - 5 = 16 \) Substituting back: \[ \Delta_1 = 3(-14) - 4(-18) - 2(16) \] \[ = -42 + 72 - 32 = -2 \quad (\text{non-zero}) \] **For \( \Delta_2 \)** (replace the second column with constants): \[ \Delta_2 = \begin{vmatrix} 1 & 3 & -2 \\ 3 & 7 & 5 \\ 2 & 5 & 1 \end{vmatrix} \] Following similar steps as above, we will find that \( \Delta_2 \) is also non-zero. **For \( \Delta_3 \)** (replace the third column with constants): \[ \Delta_3 = \begin{vmatrix} 1 & 4 & 3 \\ 3 & 1 & 7 \\ 2 & 3 & 5 \end{vmatrix} \] This will also yield a non-zero value. ### Step 4: Conclusion Since \( \Delta = 0 \) and \( \Delta_1, \Delta_2, \Delta_3 \) are non-zero, the system of equations has no solution. Thus, the statement "There is no solution for the equations" is **True**.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (FILL IN THE BLANKS )|5 Videos
  • DETERMINANTS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE |1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (4) (MULTIPLE CHOICE QUESTIONS) |20 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

The system of equation 2x + y - 3z = 5 3x - 2y + 2z = 5 5x - 3y - z = 16

The number of solutions of the system of equations x+y+z = 4, 2x + 5y – 2z = 3 and x + 7y – 7z = 5, is /are a)0 b)1 c)2 d)infinite

The number of solutions of the equation.3x+3y-z=5,x+y+z=3,2x+2y-z=3

The solutions of the equations x+2y+3z=14,3x+y+2z=11,2x+3y+z=11

The solution of the system of equations is x-y+2z=1,2y-3z=1 and 3x-2y+4y=2 is

The system of equation 2x + y - 3z = 5 3x-2y+2z=5 and 5x-3y-z=16

If the system of equations 2x 3y – z = 5 x alpha y 3z = –4 3x – y beta z = 7 has infinitely many solutions, then 13 alpha beta is equal to