Home
Class 12
MATHS
Locus of the centroid of a triangle whos...

Locus of the centroid of a triangle whose vertices are `(a cos t, a sint), (bsin t,-b cos t)` and (1,0) where t is parameter is :

A

`(3x-1)^(2)+(3y)^(2)=a^(2)-b^(2)`

B

`(3x-1)^(2)+(3y)^(2)=a^(2)+b^(2)`

C

`(3x+1)^(2)+(3y)^(2)=a^(2)+b^(2)`

D

`(3x+1)^(2)+(3y)^(2)=a^(2)-b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the centroid of the triangle with vertices \((a \cos t, a \sin t)\), \((b \sin t, -b \cos t)\), and \((1, 0)\), we will follow these steps: ### Step 1: Identify the coordinates of the vertices The vertices of the triangle are given as: - \(A = (a \cos t, a \sin t)\) - \(B = (b \sin t, -b \cos t)\) - \(C = (1, 0)\) ### Step 2: Use the formula for the centroid The centroid \(G\) of a triangle with vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) is given by: \[ G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) \] Substituting the coordinates of the vertices: \[ G\left(\frac{a \cos t + b \sin t + 1}{3}, \frac{a \sin t - b \cos t + 0}{3}\right) \] ### Step 3: Simplify the coordinates of the centroid Let \(h\) and \(k\) represent the coordinates of the centroid: \[ h = \frac{a \cos t + b \sin t + 1}{3} \] \[ k = \frac{a \sin t - b \cos t}{3} \] ### Step 4: Rearrange the equations for \(h\) and \(k\) From the equations for \(h\) and \(k\), we can express them in terms of \(t\): 1. \(3h - 1 = a \cos t + b \sin t\) 2. \(3k = a \sin t - b \cos t\) ### Step 5: Square both equations Now, we will square both equations: 1. \((3h - 1)^2 = (a \cos t + b \sin t)^2\) 2. \((3k)^2 = (a \sin t - b \cos t)^2\) ### Step 6: Expand both squared equations Expanding the first equation: \[ (3h - 1)^2 = a^2 \cos^2 t + b^2 \sin^2 t + 2ab \sin t \cos t \] Expanding the second equation: \[ (3k)^2 = a^2 \sin^2 t + b^2 \cos^2 t - 2ab \sin t \cos t \] ### Step 7: Add the two equations Now, we will add both expanded equations: \[ (3h - 1)^2 + (3k)^2 = (a^2 \cos^2 t + b^2 \sin^2 t + 2ab \sin t \cos t) + (a^2 \sin^2 t + b^2 \cos^2 t - 2ab \sin t \cos t) \] This simplifies to: \[ (3h - 1)^2 + (3k)^2 = a^2 (\cos^2 t + \sin^2 t) + b^2 (\sin^2 t + \cos^2 t) \] Using the identity \(\cos^2 t + \sin^2 t = 1\): \[ (3h - 1)^2 + (3k)^2 = a^2 + b^2 \] ### Step 8: Final equation of the locus Rearranging gives us the equation of the locus: \[ (3h - 1)^2 + (3k)^2 = a^2 + b^2 \] Replacing \(h\) with \(x\) and \(k\) with \(y\): \[ (3x - 1)^2 + (3y)^2 = a^2 + b^2 \] ### Conclusion The locus of the centroid of the triangle is given by: \[ (3x - 1)^2 + (3y)^2 = a^2 + b^2 \]
Promotional Banner

Topper's Solved these Questions

  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(1)(TRUE AND FALSE)|1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise PROBLEM SET(1)(FILL IN THE BLANK)|3 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos
  • SELF ASSESSMENT TEST

    ML KHANNA|Exercise OBJECTIVE MATHEMATICS |16 Videos

Similar Questions

Explore conceptually related problems

Find the locus of the centroid of a triangle whose vertices are (a cos t,a sin t),(b sin t,-b cos t) and (1,0) where t' is the parameter.

Prove that the locus of the centroid of the triangle whose vertices are (a cos t,a sin t),(b sin t,-b cos t), and (1,0), where t is a parameter,is circle.

Locus of centroid of the triangle whose vertices are (a cos t, a sin t), (b sin t, - b cos t) and (1, 0), where is a

Locus of centroid of the triangle whose vertices are (a cos t,a sin t),(b sin t-b cos t)and(1,0) where t is a parameter is: (3x-1)^(2)+(3y)^(2)=a^(2)-b^(2)(3x-1)^(2)+(3y)^(2)=a^(2)+b^(2)(3x+1)^(2)+(3y)^(2)=a^(2)+b^(2)(3x+1)^(2)+(3y)^(2)=a^(2)-b^(2)

Locus of centroid of the triangle whose vertices are (a cos t ,a s in t ), (b s in t ,-b cos t ) and (1, 0), where t is a parameter, is (3x-1)^2+(3y)^2=a^2-b^2 (3x-1)^2+(3y)^2=a^2+b^2 (3x+1)^2+(3y)^2=a^2+b^2 (3x+1)^2+(3y)^2=a^2-b^2

x = a (cos t + sin t), y = a (sin t-cos t)

If x=a(cos t+t sin t) and y=a(sin t-t cos t)

Eccentricity of ellipse whose equation is x=3 (cos t + sin t), y = 4 (cos t - sin t) where t is parameter is

7. x=a(cos t+t sin t),y=a(sin t-t cos t) find dy/dx

ML KHANNA-RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE-PROBLEM SET(1)(MULTIPLE CHOICE QUESTIONS)
  1. The range of values of alpha in the interval (0,pi) such that the poin...

    Text Solution

    |

  2. ABC is an isosceles triangle. If the coordinates of the base are B(1,3...

    Text Solution

    |

  3. A point P on y-axis is equisdistant from the points A(-5,4) and B(3,-2...

    Text Solution

    |

  4. If the vertices P,Q,R of a triangle PQR are rational points, which of ...

    Text Solution

    |

  5. If alpha,beta, gamma are the real roots of the equation x^(3)-3ax^(2)+...

    Text Solution

    |

  6. Let O(0, 0), P(3, 4), Q(6, 0) be the vertices of the triangle OPQ. The...

    Text Solution

    |

  7. Let S1 , S2 , …. Be squares such that for each n ge 1 the length of a...

    Text Solution

    |

  8. If the point P(x,y) be equidistant from the points A(a+b,b-a) and B(a-...

    Text Solution

    |

  9. If the equation of the locus of a point equidistant from the points (a...

    Text Solution

    |

  10. Vertices of a DeltaABC are A(2,2),B(-4,-4),C(5,-8). Then length of the...

    Text Solution

    |

  11. If O be the origin and Q(1)(x(1),y(1)) and Q(2)(x(2),y(2)) be two poin...

    Text Solution

    |

  12. The sides of a triangle are 3x + 4y, 4x + 3y and 5x+5y units, where x ...

    Text Solution

    |

  13. The triangle OAB is right angled where points O,A,B are (0,0) (cos the...

    Text Solution

    |

  14. The line joining the points A(bcos theta, b sin theta) and B(a cos phi...

    Text Solution

    |

  15. The vertices of a triangle ABC has co -ordinates (cos theta, sin theta...

    Text Solution

    |

  16. Locus of the centroid of a triangle whose vertices are (a cos t, a sin...

    Text Solution

    |

  17. Triangle is formed by the co-ordinates (0,0),(0,21) and (21,0). Find t...

    Text Solution

    |

  18. If p,x(1),x(2),………x(i)….. And q,y(1),y(2),…………y(i)…are in A.P. with c...

    Text Solution

    |

  19. The vertices of a triangle are the points A(-36,7),B(20,7) and C(0,-8)...

    Text Solution

    |

  20. The co ordinates of the base BC of an isosceles triangle are B(1,3) an...

    Text Solution

    |