Home
Class 12
MATHS
The parametric equations of the circle ...

The parametric equations of the circle
`x^(2)+y^(2)+x+sqrt(3)y=0` are ............

Text Solution

AI Generated Solution

The correct Answer is:
To find the parametric equations of the circle given by the equation \(x^2 + y^2 + x + \sqrt{3}y = 0\), we will follow these steps: ### Step 1: Rewrite the Circle Equation We start with the given equation: \[ x^2 + y^2 + x + \sqrt{3}y = 0 \] We will rearrange this equation to group the \(x\) and \(y\) terms. ### Step 2: Complete the Square We will complete the square for both \(x\) and \(y\). 1. For \(x\): \[ x^2 + x = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4} \] 2. For \(y\): \[ y^2 + \sqrt{3}y = \left(y + \frac{\sqrt{3}}{2}\right)^2 - \frac{3}{4} \] Now substituting back into the equation: \[ \left(x + \frac{1}{2}\right)^2 - \frac{1}{4} + \left(y + \frac{\sqrt{3}}{2}\right)^2 - \frac{3}{4} = 0 \] This simplifies to: \[ \left(x + \frac{1}{2}\right)^2 + \left(y + \frac{\sqrt{3}}{2}\right)^2 = 1 \] ### Step 3: Identify the Center and Radius From the standard form of the circle \((x - a)^2 + (y - b)^2 = r^2\), we can identify: - Center \((a, b) = \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)\) - Radius \(r = 1\) ### Step 4: Write the Parametric Equations The parametric equations for a circle are given by: \[ x = a + r \cos \theta \] \[ y = b + r \sin \theta \] Substituting the values of \(a\), \(b\), and \(r\): \[ x = -\frac{1}{2} + 1 \cdot \cos \theta = -\frac{1}{2} + \cos \theta \] \[ y = -\frac{\sqrt{3}}{2} + 1 \cdot \sin \theta = -\frac{\sqrt{3}}{2} + \sin \theta \] ### Final Parametric Equations Thus, the parametric equations of the circle are: \[ x = -\frac{1}{2} + \cos \theta \] \[ y = -\frac{\sqrt{3}}{2} + \sin \theta \] ---
Promotional Banner

Topper's Solved these Questions

  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |49 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|2 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |3 Videos
  • TANGENTS AND NORMALS

    ML KHANNA|Exercise SELF ASSESSMENT TEST (MULTIPLE CHOICE QUESTIONS)|19 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos

Similar Questions

Explore conceptually related problems

Find the parametric equation of the circle x^(2)+y^(2)+x+sqrt(3)y=0

The parametric equation of the circle x^(2)+y^(2)=r^(2) are

The parametric equations of the circle x^(2) + y^(2) + mx + my = 0 are

Find the parametric equation of the circles : x^2 +y^2 =9

Find the parametric equations of the circles x^(2)+y^(2)=16 .

Write the parametric equations of the circle x^(2)+y^(2)-2x-4y-4=0

Find the parametric equation of the circles : x^2 + y^2 - 2x+4y-4=0

The parametric point on the circle x^(2)+y^(2)=a^(2) is :