Home
Class 12
MATHS
If alpha, beta, gamma,delta be four angl...

If `alpha, beta, gamma,delta` be four angles of a cyclic quadrilateral taken in clockwise direction then the value of `(2+Sigma cos alpha cos beta)` will be:

A

`sin^(2)alpha+sin^(2)beta`

B

`cos^(2)gamma+cos^(2)delta`

C

`sin^(2)alpha +sin^(2)delta`

D

`cos^(2)beta+cos^(2)gamma`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(2 + \Sigma \cos \alpha \cos \beta\) for a cyclic quadrilateral with angles \(\alpha, \beta, \gamma, \delta\). ### Step-by-Step Solution: 1. **Understanding the Properties of Cyclic Quadrilaterals**: In a cyclic quadrilateral, the sum of opposite angles is \(180^\circ\). Therefore, we have: \[ \alpha + \gamma = 180^\circ \quad \text{and} \quad \beta + \delta = 180^\circ \] 2. **Expressing Angles**: From the above properties, we can express \(\gamma\) and \(\delta\) in terms of \(\alpha\) and \(\beta\): \[ \gamma = 180^\circ - \alpha \quad \text{and} \quad \delta = 180^\circ - \beta \] 3. **Using Cosine Properties**: We can use the cosine of these angles: \[ \cos \gamma = \cos(180^\circ - \alpha) = -\cos \alpha \] \[ \cos \delta = \cos(180^\circ - \beta) = -\cos \beta \] 4. **Expanding the Expression**: We need to evaluate: \[ \Sigma \cos \alpha \cos \beta = \cos \alpha \cos \beta + \cos \alpha \cos \gamma + \cos \alpha \cos \delta + \cos \beta \cos \gamma + \cos \beta \cos \delta + \cos \gamma \cos \delta \] 5. **Substituting Values**: Substitute \(\cos \gamma\) and \(\cos \delta\) into the expression: \[ \Sigma \cos \alpha \cos \beta = \cos \alpha \cos \beta + \cos \alpha (-\cos \alpha) + \cos \alpha (-\cos \beta) + \cos \beta (-\cos \alpha) + \cos \beta (-\cos \beta) + (-\cos \alpha)(-\cos \beta) \] This simplifies to: \[ = \cos \alpha \cos \beta - \cos^2 \alpha - \cos^2 \beta + \cos^2 \alpha + \cos^2 \beta \] The terms \(-\cos^2 \alpha\) and \(-\cos^2 \beta\) cancel out. 6. **Final Simplification**: Thus, we find: \[ \Sigma \cos \alpha \cos \beta = 0 \] 7. **Adding 2**: Now, we add 2 to our result: \[ 2 + \Sigma \cos \alpha \cos \beta = 2 + 0 = 2 \] ### Conclusion: The value of \(2 + \Sigma \cos \alpha \cos \beta\) is \(2\).
Promotional Banner

Topper's Solved these Questions

  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |11 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS)|6 Videos
  • TANGENTS AND NORMALS

    ML KHANNA|Exercise SELF ASSESSMENT TEST (MULTIPLE CHOICE QUESTIONS)|19 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma,delta be four angles of a cyclic quadrilateral taken in clockwise direction then the value of (2+sum cos alpha cos beta) will be:

Suppose alpha,beta,gamma and delta are the interior angles of regular pentagon,heagon,decagon,and dodeccagon,respectively,then the value of |cos alpha sec beta cos gamma csc delta| is

If the normals at alpha, beta,gamma and delta on an ellipse are concurrent then the value of (sigma cos alpha)(sigma sec alpha) I

If a line makes angles alpha, beta, gamma, delta with the diafonals of a cubes then the value of 9(cos 2alpha + cos 2beta + cos2gamma + cos 2delta)^(2) equals ….......

Let alpha, beta, gamma be the measures of angle such that sin alpha+sin beta+sin gamma ge 2 . Then the possible value of cos alpha + cos beta+cos gamma is

If alpha, beta , gamma are direction-angles of a line, prove that (i) cos2alpha + cos 2 beta +cos2 gamma+ 1 = 0 . (ii) cos 2 alpha + cos 2 beta + cos 2 gamma = -1 .

If alpha,beta ,gamma are direction angles of a line , then cos 2alpha + cos 2beta + cos 2 gamma =

If alpha,beta,gamma are acute angle such that cos alpha=tan beta,cos beta=tan gamma and cos gamma=tan alpha then

If alpha,beta and gamma are angles such that tan alpha+tan beta+tan gamma=tan alpha tan beta tan gamma and x=cos alpha+i sin alpha,y=cos beta+i sin beta and z=cos gamma+i sin gamma then the value of xyz is

Let alpha,beta and gamma are the angles of a right angle triangle,then the value of sin alpha*sin beta*sin(alpha-beta)+sin beta*sin gamma*sin(beta-gamma)+sin gamma*sin alpha*sin(gamma-beta)+sin(beta-gamma)*sin(gamma-gamma)*sin(gamma-

ML KHANNA-THE CIRCLE -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If the lines a(1)x+b(1)y+c(1)=0 and a(2)x+b(2)y+c(2)=0 cut the co-ordi...

    Text Solution

    |

  2. If (x/a)+(y/b)=1 and (x/c)+(y/d)=1 intersect the axes at four concylic...

    Text Solution

    |

  3. If alpha, beta, gamma,delta be four angles of a cyclic quadrilateral t...

    Text Solution

    |

  4. P, Q, R and S are the points of intersection with the co-ordinate axes...

    Text Solution

    |

  5. If the equation of a given circle is x^2+y^2=36 , then the length of t...

    Text Solution

    |

  6. The two lines through (2,3) from which the circle x^(2)+y^(2)=25 inter...

    Text Solution

    |

  7. The common chord of x^(2)+y^(2)-4x-4y=0 and x^(2)+y^(2)=16 subtends at...

    Text Solution

    |

  8. The length of the common chord of the circles (x-a)^(2)+(y-b)^(2)=c^(2...

    Text Solution

    |

  9. Let L(1) be a straight line passing through the origin and L(2) be th...

    Text Solution

    |

  10. Length of common chord of the circles x^(2)+y^(2)+ax +by+c=0 and x^(2...

    Text Solution

    |

  11. The distance of the point (1, 2) from the common chord of the circles ...

    Text Solution

    |

  12. Radius of the circle with centre (3,1) and cutting a chord of length 6...

    Text Solution

    |

  13. The equation of the circle described on the common chord of the circle...

    Text Solution

    |

  14. The intercept on the line y=x by the circle x^(2)+y^(2)-2x=0 is AB. E...

    Text Solution

    |

  15. Centre of a circle passing through point (0,1) and touching the curve ...

    Text Solution

    |

  16. A variable circle is described to pass through the point (a, 0) and to...

    Text Solution

    |

  17. The equation of tangent drawn from origin to the circle x^(2)+y^(2)-2a...

    Text Solution

    |

  18. The equation of the circle passing through (2,0) and (0,4) and having ...

    Text Solution

    |

  19. The length of the chord joining the points (4 cos alpha, 4 sin alpha)...

    Text Solution

    |

  20. The line y=mx+c intersects the circle x^(2)+y^(2)=a^(2) in two distin...

    Text Solution

    |