Home
Class 12
MATHS
The length of the chord joining the poin...

The length of the chord joining the points `(4 cos alpha, 4 sin alpha) and {4 cos (alpha+60^(@)), 4 sin (alpha+60^(@))}` on the circle `x^(2)+y^(2)=16` is

A

2

B

3

C

4

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the chord joining the points \( P(4 \cos \alpha, 4 \sin \alpha) \) and \( Q(4 \cos(\alpha + 60^\circ), 4 \sin(\alpha + 60^\circ)) \) on the circle defined by the equation \( x^2 + y^2 = 16 \), we can follow these steps: ### Step 1: Identify the coordinates of the points The coordinates of the points are given as: - \( P = (4 \cos \alpha, 4 \sin \alpha) \) - \( Q = (4 \cos(\alpha + 60^\circ), 4 \sin(\alpha + 60^\circ)) \) ### Step 2: Use the distance formula The length of the chord \( PQ \) can be calculated using the distance formula: \[ PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Substituting the coordinates of points \( P \) and \( Q \): \[ PQ = \sqrt{(4 \cos(\alpha + 60^\circ) - 4 \cos \alpha)^2 + (4 \sin(\alpha + 60^\circ) - 4 \sin \alpha)^2} \] ### Step 3: Factor out the common term We can factor out \( 4 \) from both terms: \[ PQ = 4 \sqrt{(\cos(\alpha + 60^\circ) - \cos \alpha)^2 + (\sin(\alpha + 60^\circ) - \sin \alpha)^2} \] ### Step 4: Use the angle addition formulas Using the angle addition formulas: - \( \cos(\alpha + 60^\circ) = \cos \alpha \cos 60^\circ - \sin \alpha \sin 60^\circ = \frac{1}{2} \cos \alpha - \frac{\sqrt{3}}{2} \sin \alpha \) - \( \sin(\alpha + 60^\circ) = \sin \alpha \cos 60^\circ + \cos \alpha \sin 60^\circ = \frac{1}{2} \sin \alpha + \frac{\sqrt{3}}{2} \cos \alpha \) ### Step 5: Substitute the values into the distance formula Now substituting these into our distance formula: \[ PQ = 4 \sqrt{\left(\frac{1}{2} \cos \alpha - \frac{\sqrt{3}}{2} \sin \alpha - \cos \alpha\right)^2 + \left(\frac{1}{2} \sin \alpha + \frac{\sqrt{3}}{2} \cos \alpha - \sin \alpha\right)^2} \] This simplifies to: \[ PQ = 4 \sqrt{\left(-\frac{1}{2} \cos \alpha - \frac{\sqrt{3}}{2} \sin \alpha\right)^2 + \left(-\frac{1}{2} \sin \alpha + \frac{\sqrt{3}}{2} \cos \alpha\right)^2} \] ### Step 6: Simplify the expression Calculating the squares: 1. For the first term: \[ \left(-\frac{1}{2} \cos \alpha - \frac{\sqrt{3}}{2} \sin \alpha\right)^2 = \frac{1}{4} \cos^2 \alpha + \frac{3}{4} \sin^2 \alpha + \frac{\sqrt{3}}{2} \cos \alpha \sin \alpha \] 2. For the second term: \[ \left(-\frac{1}{2} \sin \alpha + \frac{\sqrt{3}}{2} \cos \alpha\right)^2 = \frac{1}{4} \sin^2 \alpha + \frac{3}{4} \cos^2 \alpha - \frac{\sqrt{3}}{2} \sin \alpha \cos \alpha \] ### Step 7: Combine the terms Combining these two results gives: \[ PQ^2 = 4 \left(\frac{1}{4} (\cos^2 \alpha + \sin^2 \alpha) + \frac{1}{4} (\sin^2 \alpha + \cos^2 \alpha)\right) = 4 \cdot 1 = 16 \] Thus, \( PQ = 4 \). ### Final Result The length of the chord \( PQ \) is \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |11 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS)|6 Videos
  • TANGENTS AND NORMALS

    ML KHANNA|Exercise SELF ASSESSMENT TEST (MULTIPLE CHOICE QUESTIONS)|19 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos

Similar Questions

Explore conceptually related problems

The length of the chord joining the points ( 4cos theta , 4 sin theta ) and [ 4 cos ( theta + 60^(@)), 4 sin ( theta + 60^(@))] of the circle x^(2) +y^(2) =16 is :

The length ofthe chord joining the points (4cos theta,4sin theta) and [4cos theta+60^(@)),4sin(theta+60^(@))] of the circle x^(2)+y^(2)=16 is

Find the length of perpendicular from the point (a cos alpha, a sin alpha) to the line x cos alpha+y sin alpha=p .

The locus of the intersection point of x cos alpha+y sin alpha=a and x sin alpha-y cos alpha=b is

sin alpha * sin (60-alpha) sin (60 + alpha) = (1) / (4) * sin3 alpha

If sin alpha/2 + cos alpha/2=1.4 , then: sin alpha cos alpha =

sin alpha-sin2 alpha+sin3 alpha=4cos(3 alpha)/(2)cos alpha sin(alpha)/(2)

ML KHANNA-THE CIRCLE -Problem Set (3) (MULTIPLE CHOICE QUESTIONS)
  1. If the equation of a given circle is x^2+y^2=36 , then the length of t...

    Text Solution

    |

  2. The two lines through (2,3) from which the circle x^(2)+y^(2)=25 inter...

    Text Solution

    |

  3. The common chord of x^(2)+y^(2)-4x-4y=0 and x^(2)+y^(2)=16 subtends at...

    Text Solution

    |

  4. The length of the common chord of the circles (x-a)^(2)+(y-b)^(2)=c^(2...

    Text Solution

    |

  5. Let L(1) be a straight line passing through the origin and L(2) be th...

    Text Solution

    |

  6. Length of common chord of the circles x^(2)+y^(2)+ax +by+c=0 and x^(2...

    Text Solution

    |

  7. The distance of the point (1, 2) from the common chord of the circles ...

    Text Solution

    |

  8. Radius of the circle with centre (3,1) and cutting a chord of length 6...

    Text Solution

    |

  9. The equation of the circle described on the common chord of the circle...

    Text Solution

    |

  10. The intercept on the line y=x by the circle x^(2)+y^(2)-2x=0 is AB. E...

    Text Solution

    |

  11. Centre of a circle passing through point (0,1) and touching the curve ...

    Text Solution

    |

  12. A variable circle is described to pass through the point (a, 0) and to...

    Text Solution

    |

  13. The equation of tangent drawn from origin to the circle x^(2)+y^(2)-2a...

    Text Solution

    |

  14. The equation of the circle passing through (2,0) and (0,4) and having ...

    Text Solution

    |

  15. The length of the chord joining the points (4 cos alpha, 4 sin alpha)...

    Text Solution

    |

  16. The line y=mx+c intersects the circle x^(2)+y^(2)=a^(2) in two distin...

    Text Solution

    |

  17. If a circle passes through the points of intersection of the co-ordina...

    Text Solution

    |

  18. A circle cuts the circles x^(2)+y^(2)=4 x^(2)+y^(2)-6x-8y+10=0 and...

    Text Solution

    |

  19. Two parallel chords of a circle of radius 2 are at a distance sqrt3 + ...

    Text Solution

    |

  20. If P and Q are the points of intersection of the circles x^(2)+y^(2)+...

    Text Solution

    |