Home
Class 12
MATHS
The circles x^(2)+y^(2)-4x+6y+8=0 and x^...

The circles `x^(2)+y^(2)-4x+6y+8=0` and `x^(2)+y^(2)-10x-6y+14=0`

A

touch externally

B

touch internally

C

intersect

D

do not touch

Text Solution

AI Generated Solution

The correct Answer is:
To determine the relationship between the two circles given by the equations \(x^2 + y^2 - 4x + 6y + 8 = 0\) and \(x^2 + y^2 - 10x - 6y + 14 = 0\), we will follow these steps: ### Step 1: Rewrite the equations in standard form We start by rewriting each circle's equation in the standard form \((x - h)^2 + (y - k)^2 = r^2\). **For Circle 1:** Given equation: \[ x^2 + y^2 - 4x + 6y + 8 = 0 \] Rearranging gives: \[ x^2 - 4x + y^2 + 6y = -8 \] Completing the square for \(x\) and \(y\): \[ (x^2 - 4x + 4) + (y^2 + 6y + 9) = -8 + 4 + 9 \] \[ (x - 2)^2 + (y + 3)^2 = 5 \] Thus, the center \(C_1\) is \((2, -3)\) and the radius \(r_1 = \sqrt{5}\). **For Circle 2:** Given equation: \[ x^2 + y^2 - 10x - 6y + 14 = 0 \] Rearranging gives: \[ x^2 - 10x + y^2 - 6y = -14 \] Completing the square for \(x\) and \(y\): \[ (x^2 - 10x + 25) + (y^2 - 6y + 9) = -14 + 25 + 9 \] \[ (x - 5)^2 + (y - 3)^2 = 20 \] Thus, the center \(C_2\) is \((5, 3)\) and the radius \(r_2 = \sqrt{20} = 2\sqrt{5}\). ### Step 2: Calculate the distance between the centers The distance \(d\) between the centers \(C_1(2, -3)\) and \(C_2(5, 3)\) is given by: \[ d = \sqrt{(5 - 2)^2 + (3 + 3)^2} = \sqrt{3^2 + 6^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5} \] ### Step 3: Check the conditions for touching or intersecting The circles can either touch externally, touch internally, or intersect based on the following conditions: 1. **Touch externally**: \(d = r_1 + r_2\) 2. **Touch internally**: \(d = |r_1 - r_2|\) 3. **Intersect**: \( |r_1 - r_2| < d < r_1 + r_2\) Calculating \(r_1 + r_2\) and \(|r_1 - r_2|\): \[ r_1 + r_2 = \sqrt{5} + 2\sqrt{5} = 3\sqrt{5} \] \[ |r_1 - r_2| = | \sqrt{5} - 2\sqrt{5} | = | -\sqrt{5} | = \sqrt{5} \] ### Step 4: Compare the distance with the radii Now we compare: - \(d = 3\sqrt{5}\) - \(r_1 + r_2 = 3\sqrt{5}\) - \(|r_1 - r_2| = \sqrt{5}\) Since \(d = r_1 + r_2\), the circles touch externally. ### Final Conclusion The two circles touch externally. ---
Promotional Banner

Topper's Solved these Questions

  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |4 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (4) (FILL IN THE BLANKS) |1 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |11 Videos
  • TANGENTS AND NORMALS

    ML KHANNA|Exercise SELF ASSESSMENT TEST (MULTIPLE CHOICE QUESTIONS)|19 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos

Similar Questions

Explore conceptually related problems

Show that the circles x^(2)+y^(2)-4x+6y+8=0andx^(2)+y^(2)-10x-6y+14=0 touch at (3,-1).

The circles x^(2)+y^(2)+6x+6y=0 and x^(2)+y^(2)-12x-12y=0

The circles x^(2)+y^(2)-4x-6y-12=0 and x^(2)+y^(2)+4x+6y+4=0

Find the number of common tangents to the circles x^(2)+y^(2)-8x+2y+8=0andx^(2)+y^(2)-2x-6y-15=0 .

The point of contact of the circles x^(2)+y^(2)-4x+6y-3=0 and x^(2)+y^(2)+16x+6y+37=0 is

Find the number of common tangents that can be drawn to the circles x^(2)+y^(2)-4x-6y-3=0 and x^(2)+y^(2)+2x+2y+1=0

The number of direct common tangents that can be drawn to the circles x^(2)+y^(2)+4x-6y-12=0 and x^(2)+y^(2)-8x+10y+16=0 is/are

ML KHANNA-THE CIRCLE -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. Two circles x^(2) + y^(2) - 2x - 4y = 0 and x^(2) + y^(2) - 8y...

    Text Solution

    |

  2. The circle S(1)(a(1),b(1)), r(1) touches externally the circles S(2) ...

    Text Solution

    |

  3. The circles x^(2)+y^(2)-4x+6y+8=0 and x^(2)+y^(2)-10x-6y+14=0

    Text Solution

    |

  4. Equation of a circle with centre (4,3) touching the circle x^(2)+y^(2)...

    Text Solution

    |

  5. Centre of the circle whose radius is 3 and which touches internally th...

    Text Solution

    |

  6. Equation of the circle touching the circle x^(2) + y^(2) -15x + 5y =0 ...

    Text Solution

    |

  7. If the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2)...

    Text Solution

    |

  8. The locus of centre of the circle which touches the circle x^(2)+(y-1)...

    Text Solution

    |

  9. The circle x^(2)+y^(2)-2ax+c^(2)=0 and x^(2)+y^(2)-2by+c^(2)=0 will ...

    Text Solution

    |

  10. The circles x^(2)+y^(2)+2x-2y+1=0 and x^(2)+y^(2)-2x-2y+1=0 touch each...

    Text Solution

    |

  11. Given the equation of two circles x^(2)+y^(2)=r^(2) and x^(2) +y^(2) ...

    Text Solution

    |

  12. If the two circles x^(2) + y^(2) =4 and x^(2) +y^(2) - 24x - 10y +a^(2...

    Text Solution

    |

  13. If two circles (x-1)^(2)+(y-3)^(2)=r^(2) and x^(2)+y^(2)-8x+2y+8=0 int...

    Text Solution

    |

  14. The number of common tangents to the circles x^(2)+y^(2)+2x+8y-23=0...

    Text Solution

    |

  15. The number of common tangents to the circles x^(2)+y^(2) -x=0, x^(2)+...

    Text Solution

    |

  16. The number of common tangents to the circles x^(2)+y^(2)=4 and x^(2)+...

    Text Solution

    |

  17. The number of common tangents of the circles x^(2) +y^(2) =16 and x^(2...

    Text Solution

    |

  18. The common tangents to the circles x^(2) +y^(2) +2x = 0 and x^(2) +y^(...

    Text Solution

    |

  19. The locus of the centre of the circles which touch both the circles x^...

    Text Solution

    |

  20. A circle touches the x-axis and also touches the circle with centre (0...

    Text Solution

    |