Home
Class 12
MATHS
The circle x^(2)+y^(2)-2ax+c^(2)=0 and ...

The circle `x^(2)+y^(2)-2ax+c^(2)=0` and `x^(2)+y^(2)-2by+c^(2)=0` will touch each other externally if

A

`(1)/(a^(2)) +(1)/(b^(2)) =(1)/(c^(2))`

B

`(1)/(b^(2)) +(1)/(c^(2))=(1)/(a^(2))`

C

`(1)/(c^(2)) +(1)/(a^(2)) =(1)/(b^(2))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To determine the condition under which the circles given by the equations \(x^2 + y^2 - 2ax + c^2 = 0\) and \(x^2 + y^2 - 2by + c^2 = 0\) touch each other externally, we can follow these steps: ### Step 1: Identify the centers and radii of the circles For the first circle \(S_1: x^2 + y^2 - 2ax + c^2 = 0\): - The center \(C_1\) is \((a, 0)\). - The radius \(r_1\) is given by: \[ r_1 = \sqrt{a^2 - c^2} \] For the second circle \(S_2: x^2 + y^2 - 2by + c^2 = 0\): - The center \(C_2\) is \((0, b)\). - The radius \(r_2\) is given by: \[ r_2 = \sqrt{b^2 - c^2} \] ### Step 2: Find the distance between the centers The distance \(d\) between the centers \(C_1\) and \(C_2\) is calculated as: \[ d = \sqrt{(a - 0)^2 + (0 - b)^2} = \sqrt{a^2 + b^2} \] ### Step 3: Set up the condition for external tangency For the circles to touch each other externally, the distance between the centers must equal the sum of the radii: \[ d = r_1 + r_2 \] Substituting the expressions for \(d\), \(r_1\), and \(r_2\): \[ \sqrt{a^2 + b^2} = \sqrt{a^2 - c^2} + \sqrt{b^2 - c^2} \] ### Step 4: Square both sides to eliminate the square roots Squaring both sides gives: \[ a^2 + b^2 = ( \sqrt{a^2 - c^2} + \sqrt{b^2 - c^2} )^2 \] Expanding the right-hand side: \[ a^2 + b^2 = (a^2 - c^2) + (b^2 - c^2) + 2\sqrt{(a^2 - c^2)(b^2 - c^2)} \] This simplifies to: \[ a^2 + b^2 = a^2 + b^2 - 2c^2 + 2\sqrt{(a^2 - c^2)(b^2 - c^2)} \] ### Step 5: Rearranging the equation Rearranging gives: \[ 0 = -2c^2 + 2\sqrt{(a^2 - c^2)(b^2 - c^2)} \] Dividing by 2: \[ c^2 = \sqrt{(a^2 - c^2)(b^2 - c^2)} \] ### Step 6: Square both sides again Squaring both sides again results in: \[ c^4 = (a^2 - c^2)(b^2 - c^2) \] Expanding the right-hand side: \[ c^4 = a^2b^2 - a^2c^2 - b^2c^2 + c^4 \] Subtracting \(c^4\) from both sides gives: \[ 0 = a^2b^2 - a^2c^2 - b^2c^2 \] ### Step 7: Factor the equation Factoring out \(c^2\): \[ a^2b^2 = c^2(a^2 + b^2) \] ### Step 8: Divide by \(a^2b^2c^2\) Dividing through by \(a^2b^2c^2\) yields: \[ \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2} \] ### Final Condition Thus, the condition for the circles to touch each other externally is: \[ \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |4 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (4) (FILL IN THE BLANKS) |1 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |11 Videos
  • TANGENTS AND NORMALS

    ML KHANNA|Exercise SELF ASSESSMENT TEST (MULTIPLE CHOICE QUESTIONS)|19 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos

Similar Questions

Explore conceptually related problems

Prove that the circle x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other if (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

Show that the circles x ^(2) + y ^(2) - 2x =0 and x ^(2) + y ^(2) - 8x + 12=0 touch each other externally. Find the point of contact.

If two circles x^(2) + y^(2) - 2ax + c = =0 and x^(2) + y^(2) - 2by + c = 0 touch each other , then c =

If two circles x^(2)+y^(2)+c^(2)=2ax and x^(2)+y^(2)+c^(2)-2by=0 touch each other externally , then prove that (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))

Two circles x^(2) + y^(2) -2kx = 0 and x^(2) + y^(2) - 4x + 8y + 16 = 0 touch each other externally.Then k is

If circles (x -1)^(2) + y^(2) = a^(2) " and " (x + 2)^(2) + y^(2) = b^(2) touch each other externally , then

The circles x^(2)+y^(2)-12x-12y=0 and x^(2)+y^(2)+6x+6y=0 .touch each other externally touch each other internally intersect at two points none of these

Prove that the circles x^(2)+y^(2)+2ax+c^(2)=0andx^(2)+y^(2)+2by+c^(2)=0 touch each other, if (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2)) .

ML KHANNA-THE CIRCLE -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. Two circles x^(2) + y^(2) - 2x - 4y = 0 and x^(2) + y^(2) - 8y...

    Text Solution

    |

  2. The circle S(1)(a(1),b(1)), r(1) touches externally the circles S(2) ...

    Text Solution

    |

  3. The circles x^(2)+y^(2)-4x+6y+8=0 and x^(2)+y^(2)-10x-6y+14=0

    Text Solution

    |

  4. Equation of a circle with centre (4,3) touching the circle x^(2)+y^(2)...

    Text Solution

    |

  5. Centre of the circle whose radius is 3 and which touches internally th...

    Text Solution

    |

  6. Equation of the circle touching the circle x^(2) + y^(2) -15x + 5y =0 ...

    Text Solution

    |

  7. If the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2)...

    Text Solution

    |

  8. The locus of centre of the circle which touches the circle x^(2)+(y-1)...

    Text Solution

    |

  9. The circle x^(2)+y^(2)-2ax+c^(2)=0 and x^(2)+y^(2)-2by+c^(2)=0 will ...

    Text Solution

    |

  10. The circles x^(2)+y^(2)+2x-2y+1=0 and x^(2)+y^(2)-2x-2y+1=0 touch each...

    Text Solution

    |

  11. Given the equation of two circles x^(2)+y^(2)=r^(2) and x^(2) +y^(2) ...

    Text Solution

    |

  12. If the two circles x^(2) + y^(2) =4 and x^(2) +y^(2) - 24x - 10y +a^(2...

    Text Solution

    |

  13. If two circles (x-1)^(2)+(y-3)^(2)=r^(2) and x^(2)+y^(2)-8x+2y+8=0 int...

    Text Solution

    |

  14. The number of common tangents to the circles x^(2)+y^(2)+2x+8y-23=0...

    Text Solution

    |

  15. The number of common tangents to the circles x^(2)+y^(2) -x=0, x^(2)+...

    Text Solution

    |

  16. The number of common tangents to the circles x^(2)+y^(2)=4 and x^(2)+...

    Text Solution

    |

  17. The number of common tangents of the circles x^(2) +y^(2) =16 and x^(2...

    Text Solution

    |

  18. The common tangents to the circles x^(2) +y^(2) +2x = 0 and x^(2) +y^(...

    Text Solution

    |

  19. The locus of the centre of the circles which touch both the circles x^...

    Text Solution

    |

  20. A circle touches the x-axis and also touches the circle with centre (0...

    Text Solution

    |