Home
Class 12
MATHS
If the circle x^(2)+y^(2) +2g x +2fy +c=...

If the circle `x^(2)+y^(2) +2g x +2fy +c=0` bisects the circumference of the circle `x^(2)+y^(2) +2g' x +2f'y+c'=0`, then the length of the common chord of these two circles is

A

`2sqrt(g^(2)+f^(2)-c)`

B

`2sqrt(g'^(2)+f'^(2)-c')`

C

`2sqrt(g^(2)+f^(2)+c)`

D

`sqrt(g'^(2)+f'^(2)+c')`

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the common chord of the two circles given by the equations: 1. \( S_1: x^2 + y^2 + 2gx + 2fy + c = 0 \) 2. \( S_2: x^2 + y^2 + 2g'x + 2f'y + c' = 0 \) where the first circle \( S_1 \) bisects the circumference of the second circle \( S_2 \), we can follow these steps: ### Step 1: Understand the condition of bisection Since circle \( S_1 \) bisects the circumference of circle \( S_2 \), the common chord of these two circles will be the diameter of circle \( S_2 \). ### Step 2: Find the radius of circle \( S_2 \) The radius \( R \) of circle \( S_2 \) can be calculated using the formula: \[ R = \sqrt{g'^2 + f'^2 - c'} \] ### Step 3: Calculate the diameter of circle \( S_2 \) The diameter \( D \) of circle \( S_2 \) is twice the radius: \[ D = 2R = 2 \sqrt{g'^2 + f'^2 - c'} \] ### Step 4: Conclusion Thus, the length of the common chord of the two circles is: \[ \text{Length of common chord} = 2 \sqrt{g'^2 + f'^2 - c'} \] ### Final Answer The length of the common chord of the circles is: \[ 2 \sqrt{g'^2 + f'^2 - c'} \] ---
Promotional Banner

Topper's Solved these Questions

  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (5) (FILL IN THE BLANKS) |2 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (6) (MULTIPLE CHOICE QUESTIONS) |27 Videos
  • THE CIRCLE

    ML KHANNA|Exercise Problem Set (4) (FILL IN THE BLANKS) |1 Videos
  • TANGENTS AND NORMALS

    ML KHANNA|Exercise SELF ASSESSMENT TEST (MULTIPLE CHOICE QUESTIONS)|19 Videos
  • THE ELLIPSE

    ML KHANNA|Exercise SELF ASSESSMENT TEST|9 Videos

Similar Questions

Explore conceptually related problems

If the circle x^(2) + y^(2) + 4x + 2y + c = 0 bisects the cirucumference of the cirlce x^(2) + y^(2) -2x -8y -d = 0 then c + d =

If the circle 3x^(2)+3y^(2)+10x+y-27=0 bisects the circumference of the circle x^(2)+y^(2)=k then k^(2)

If the circle x^(2)+y^(2)+4x+22y+c=0 bisects the circumference of the circle x^(2)+y^(2)-2x+8y-d=0 then c+d

If the circle x^(2)+y^(2)-2x-2y-1=0 bisects the circumference of the circle x^(2)+y^(2)=1 then the length of the common chord of the circles is

If the circle 3x^(2)+3y^(2)+10x+y-27=0 bisects the circumference of the circle x^(2)+y^(2)=k then k^(2)-1=

If the circle x^(2)+y^(2)+2gx+2fy+c=0 bisects the circumference of the circle x^(2)+y^(2)+2g'x+2f'y+c'=0 then prove that 2g'(g-g')+2f'(f-f')=c-c'

If the circle x^(2)+y^(2)+4x+22y+c=0 bisects the circumference of the circle x^(2)+y^(2)-2x+8y-d=0, then (c+d) is equal to

If the circle x^(2)+y^(2)=4 bisects the circumference of the circle x^(2)+y^(2)-2x+6y+a=0 , then 'a' equals

If the circles x^(2)+y^(2)+2gx+2fy+c=0 bisects x^(2)+y^(2)+2g'x+2f'y+c'=0 then the length of the common chord of these two circles is -

Consider the circle x^(2)+y^(2)=9 and x^(2)+y^(2)-10x+9=0 then find the length of the common chord of circle is

ML KHANNA-THE CIRCLE -Problem Set (5) (MULTIPLE CHOICE QUESTIONS)
  1. A variable chord is drawn through the origin to the circle x^(2)+y^(2)...

    Text Solution

    |

  2. Locus of the middle points of the chords of the circle x^(2)+y^(2)-2x-...

    Text Solution

    |

  3. If the circle x^(2)+y^(2) +2g x +2fy +c=0 bisects the circumference o...

    Text Solution

    |

  4. If two distinct chords, drawn from the point (p, q) on the circle x^(2...

    Text Solution

    |

  5. A chord of the circle x^(2)+y^(2)=a^(2) passes through a fixed point ...

    Text Solution

    |

  6. The equation of the diameter of the circle (x-2)^(2)+(y+1)^(2) =16 wh...

    Text Solution

    |

  7. The pole of the straight line 9x+ y - 28=0 with respect to the circle ...

    Text Solution

    |

  8. The pole of the line 3x + 4y - 45=0 w.r.t. the circle x^(2)+y^(2)-6x...

    Text Solution

    |

  9. Polar of origin (0, 0) w.r.t. the circle x^(2)+y^(2)+2lambda x +2 mu y...

    Text Solution

    |

  10. The chords of contact of tangents from three points A,B,C to the circl...

    Text Solution

    |

  11. The chord of contact of tangents drawn from any point on the circle x^...

    Text Solution

    |

  12. If the tangents are drawn to the circle x^(2)+y^(2)=12 at the point w...

    Text Solution

    |

  13. If O is the origin and OP, OQ are tangents to the circle x^(2)+y^(2)+2...

    Text Solution

    |

  14. The distance between the chords of contact of the tangents to the circ...

    Text Solution

    |

  15. The area of the triangle formed by the tangents from the point (4,3) t...

    Text Solution

    |

  16. Tangents are drawn from the point (a, a) to the circle x^(2)+y^(2)-2x-...

    Text Solution

    |

  17. The chords of contact of the pair of tangents drawn from each point on...

    Text Solution

    |

  18. From the focus of the parabola y^(2)=8x, tangents are drawn to the cir...

    Text Solution

    |

  19. The line 9x + y -28 =0 is the chord of contact of the point P(h,k) w....

    Text Solution

    |

  20. Tangents drawn from the point P (1,8) to the circle x^(2)+y^(2)-6x-4y...

    Text Solution

    |