Home
Class 12
MATHS
If x^(2)-3xy+lamday^(2)+3x-5y+2=0 repres...

If `x^(2)-3xy+lamday^(2)+3x-5y+2=0` represents a pair of straight lines, then the value of `lamda` is

A

1

B

4

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\lambda\) such that the equation \[ x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0 \] represents a pair of straight lines. We will use the condition for a conic section to represent a pair of straight lines. ### Step 1: Identify the coefficients The general form of a conic section is given by: \[ ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \] From the given equation, we can identify the coefficients: - \(a = 1\) - \(h = -\frac{3}{2}\) (since the coefficient of \(xy\) is \(-3\)) - \(b = \lambda\) - \(g = \frac{3}{2}\) (since the coefficient of \(x\) is \(3\)) - \(f = -\frac{5}{2}\) (since the coefficient of \(y\) is \(-5\)) - \(c = 2\) ### Step 2: Use the condition for a pair of straight lines For the equation to represent a pair of straight lines, the determinant formed by these coefficients must be equal to zero: \[ \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0 \] Substituting the values we identified: \[ \begin{vmatrix} 1 & -\frac{3}{2} & \frac{3}{2} \\ -\frac{3}{2} & \lambda & -\frac{5}{2} \\ \frac{3}{2} & -\frac{5}{2} & 2 \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant Calculating the determinant: \[ = 1 \cdot \begin{vmatrix} \lambda & -\frac{5}{2} \\ -\frac{5}{2} & 2 \end{vmatrix} - \left(-\frac{3}{2}\right) \cdot \begin{vmatrix} -\frac{3}{2} & -\frac{5}{2} \\ \frac{3}{2} & 2 \end{vmatrix} + \frac{3}{2} \cdot \begin{vmatrix} -\frac{3}{2} & \lambda \\ \frac{3}{2} & -\frac{5}{2} \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \[ \begin{vmatrix} \lambda & -\frac{5}{2} \\ -\frac{5}{2} & 2 \end{vmatrix} = \lambda \cdot 2 - \left(-\frac{5}{2}\right) \left(-\frac{5}{2}\right) = 2\lambda - \frac{25}{4} \] 2. \[ \begin{vmatrix} -\frac{3}{2} & -\frac{5}{2} \\ \frac{3}{2} & 2 \end{vmatrix} = -\frac{3}{2} \cdot 2 - \left(-\frac{5}{2}\right) \cdot \frac{3}{2} = -3 + \frac{15}{4} = -\frac{12}{4} + \frac{15}{4} = \frac{3}{4} \] 3. \[ \begin{vmatrix} -\frac{3}{2} & \lambda \\ \frac{3}{2} & -\frac{5}{2} \end{vmatrix} = -\frac{3}{2} \cdot -\frac{5}{2} - \lambda \cdot \frac{3}{2} = \frac{15}{4} - \frac{3\lambda}{2} \] ### Step 4: Substitute back into the determinant equation Now substituting back into the determinant equation: \[ 1 \cdot (2\lambda - \frac{25}{4}) + \frac{3}{2} \cdot \frac{3}{4} + \frac{3}{2} \cdot \left(\frac{15}{4} - \frac{3\lambda}{2}\right) = 0 \] This simplifies to: \[ 2\lambda - \frac{25}{4} + \frac{9}{8} + \frac{45}{8} - \frac{9\lambda}{4} = 0 \] Combining like terms: \[ 2\lambda - \frac{9\lambda}{4} - \frac{25}{4} + \frac{54}{8} = 0 \] Converting \(\frac{54}{8}\) to \(\frac{27}{4}\): \[ 2\lambda - \frac{9\lambda}{4} - \frac{25}{4} + \frac{27}{4} = 0 \] This simplifies to: \[ 2\lambda - \frac{9\lambda}{4} + \frac{2}{4} = 0 \] ### Step 5: Solve for \(\lambda\) Multiplying through by 4 to eliminate the fractions: \[ 8\lambda - 9\lambda + 2 = 0 \] This gives: \[ -\lambda + 2 = 0 \implies \lambda = 2 \] ### Final Answer Thus, the value of \(\lambda\) is: \[ \lambda = 2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES)|2 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|3 Videos
  • NUMERICAL METHODS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos

Similar Questions

Explore conceptually related problems

If the equation 12x^(2)-10xy+2y^(2)+11x-5y+lambda=0 represents a pair of straight lines then the value of 221 lambda^(2)+361 lambda+582 is equal to

If kx^(2)+10xy+3y^(2)15x21y+18=0 represents a pair of straight lines then k=

Knowledge Check

  • If lambdax^(2)-10xy+12y^(2)+5x-16y-3=0 , represents a pair of straight lines, then the value of lambda is

    A
    4
    B
    3
    C
    2
    D
    1
  • a(x^(2)-y^(2))+xy=0 represents a pair of straight lines for

    A
    `a=1` only
    B
    `a=1` or `-1` only
    C
    `a=0` only
    D
    all real values of a.
  • If kx^(2)+10xy+3y^(2)-15x-21y+18=0 represents a pair of straight lines, then k=

    A
    3
    B
    4
    C
    `-3`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If x^(2)-3xy+lamday^(2)+3x-5y+2=0 represents a pair of straight lines and theta is the angle between them, them coesec^(2)theta=

    If the equation 3x^(2)+xy-y^(2)-3x+6y+k=0 represents a pair of straight lines, then the value of k, is

    If 2x^(2)-10xy+2 lamday^(2)+5x-16y-3=0 represents a pair of straight lines, then point of intersection of those lines is

    if lambda x^2+10xy+3y^2-15x-21y+18=0 represents a pair of straight lines. Then , the value of lambda is

    The equation x^(2)-3xy+lambday^(2)+3x-5y+2=0 , lambdainR , represents a pair of straight lines. If theta is the angle between these lines, then cosec^(2)theta=