Home
Class 12
MATHS
If kx^(2)+10xy+3y^(2)-15x-21y+18=0 repre...

If `kx^(2)+10xy+3y^(2)-15x-21y+18=0` represents a pair of straight lines, then k=

A

3

B

4

C

`-3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) such that the equation \( kx^2 + 10xy + 3y^2 - 15x - 21y + 18 = 0 \) represents a pair of straight lines, we can use the condition for a conic section to represent a pair of straight lines. The condition is given by: \[ abc + 2fgh - af^2 - bg^2 - ch^2 = 0 \] where \( a, b, c, f, g, h \) are the coefficients from the general form of the conic section \( ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \). ### Step 1: Identify the coefficients From the given equation, we can identify the coefficients: - \( a = k \) - \( b = 3 \) - \( c = 18 \) - \( h = 5 \) (since \( 10xy = 2hxy \)) - \( g = -\frac{15}{2} \) (from \( -15x = 2gx \)) - \( f = -\frac{21}{2} \) (from \( -21y = 2fy \)) ### Step 2: Substitute the coefficients into the condition Now we substitute these values into the condition: \[ k \cdot 3 \cdot 18 + 2 \cdot \left(-\frac{21}{2}\right) \cdot \left(-\frac{15}{2}\right) \cdot 5 - k \left(-\frac{21}{2}\right)^2 - 3 \left(-\frac{15}{2}\right)^2 - 18 \cdot 5^2 = 0 \] ### Step 3: Calculate each term 1. Calculate \( k \cdot 3 \cdot 18 \): \[ 54k \] 2. Calculate \( 2 \cdot \left(-\frac{21}{2}\right) \cdot \left(-\frac{15}{2}\right) \cdot 5 \): \[ 2 \cdot \left(-\frac{21}{2}\right) \cdot \left(-\frac{15}{2}\right) \cdot 5 = \frac{21 \cdot 15 \cdot 5}{2} = \frac{1575}{2} \] 3. Calculate \( -k \left(-\frac{21}{2}\right)^2 \): \[ -k \cdot \frac{441}{4} \] 4. Calculate \( -3 \left(-\frac{15}{2}\right)^2 \): \[ -3 \cdot \frac{225}{4} = -\frac{675}{4} \] 5. Calculate \( -18 \cdot 5^2 \): \[ -18 \cdot 25 = -450 \] ### Step 4: Combine all terms Putting it all together, we have: \[ 54k + \frac{1575}{2} - k \cdot \frac{441}{4} - \frac{675}{4} - 450 = 0 \] ### Step 5: Clear the fractions Multiply through by 4 to eliminate the fractions: \[ 216k + 3150 - 441k - 675 - 1800 = 0 \] ### Step 6: Simplify the equation Combine like terms: \[ (216k - 441k) + (3150 - 675 - 1800) = 0 \] \[ -225k + 675 = 0 \] ### Step 7: Solve for \( k \) \[ -225k = -675 \] \[ k = \frac{675}{225} = 3 \] ### Conclusion Thus, the value of \( k \) is \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES)|2 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|3 Videos
  • NUMERICAL METHODS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos

Similar Questions

Explore conceptually related problems

If kx^(2)+10xy+3y^(2)15x21y+18=0 represents a pair of straight lines then k=

If 2x^(2)-10xy+2 lamday^(2)+5x-16y-3=0 represents a pair of straight lines, then point of intersection of those lines is

if lambda x^2+10xy+3y^2-15x-21y+18=0 represents a pair of straight lines. Then , the value of lambda is

The equation x^(2)+kxy+y^(2)-5x-7y+6=0 represents a pair of straight lines, then k is

If lambdax^(2)-10xy+12y^(2)+5x-16y-3=0 , represents a pair of straight lines, then the value of lambda is

If x^(2)+4xy-2y^(2)-6x-12y-15=0 represents a pair of straight lines ,then the product of the perpendicular distances of the lines from origin is

a(x^(2)-y^(2))+xy=0 represents a pair of straight lines for

If the equation 12x^(2)-10xy+2y^(2)+11x-5y+lambda=0 represents a pair of straight lines then the value of 221 lambda^(2)+361 lambda+582 is equal to

ML KHANNA-PAIR OF STRAIGHT LINES-PROBLEM SET (2)(MULTIPLE CHOICE QUESTIONS)
  1. x^(2)+k(1)y^(2)+2k(2)y=a^(2) represents a pair of perpendicular straig...

    Text Solution

    |

  2. The equation ax^(2)+by^(2)+lamdax+lamday=0,(lamda!=0) represents a pa...

    Text Solution

    |

  3. If kx^(2)+10xy+3y^(2)-15x-21y+18=0 represents a pair of straight lines...

    Text Solution

    |

  4. The four straight lines given by the equations 12x^(2)+7xy-12y^(2)=0 a...

    Text Solution

    |

  5. The equation x^(2)y^(2)-2xy^(2)-3y^(2)-4x^(2)y+8xy+12y=0 represents

    Text Solution

    |

  6. The three lines given by y^(3)-9x^(2)y=0 form a triangle which is

    Text Solution

    |

  7. The equation y^(2)-x^(2)+2x-1=0, represents

    Text Solution

    |

  8. The quadrilatera formed by the pair of lines xy+x+y+1=0,xy+3x+3y+9=0 i...

    Text Solution

    |

  9. The circumcentre of the triangle formed by the lines xy+2x+2y+4=0 and ...

    Text Solution

    |

  10. If xy+x+y+1=0,x+ay-3=0 are concurrent then a=

    Text Solution

    |

  11. If by rotating the axes through an angle theta the general equation o...

    Text Solution

    |

  12. The equation 6x^(2)-xy-12y^(2)-8x+29y-14=0 represents a pair of lines ...

    Text Solution

    |

  13. If the equation 2x^(2)-3xy-ay^(2)+x+by-1=0 represents two perpendicula...

    Text Solution

    |

  14. The equation of second degree x^(2)+2sqrt(2)xy+2y^(2)+4x+4sqrt(2)y+1...

    Text Solution

    |

  15. The distance between pair of parallel lines 9x^(2)-24xy+16y^(2)-12x+16...

    Text Solution

    |

  16. The angle between the straight lines x^(2)-y^(2)-2y-1=0 is

    Text Solution

    |

  17. If the angle between the two lines represented by 2x^(2)+5xy+3y^(2)+7y...

    Text Solution

    |

  18. If x^(2)-3xy+lamday^(2)+3x-5y+2=0 represents a pair of straight lines ...

    Text Solution

    |

  19. The point of intersection of two lines given by 2x^(2)-5xy+2y^(2)-3x+3...

    Text Solution

    |

  20. The equation 8x^(2)+8xy+2y^(2)+26x+13y+15=0 represents a pair of para...

    Text Solution

    |