If `ax^2 + 4xy + y^2 + ax + 3y +2=0` represents a parabola, then a =
A
`-4`
B
`4`
C
`0`
D
none
Text Solution
AI Generated Solution
The correct Answer is:
To determine the value of \( a \) such that the equation \( ax^2 + 4xy + y^2 + ax + 3y + 2 = 0 \) represents a parabola, we will analyze the coefficients of the general conic section equation and apply the conditions for it to be a parabola.
### Step-by-Step Solution:
1. **Identify the Coefficients:**
The given equation can be compared to the general conic section equation:
\[
Ax^2 + 2Hxy + By^2 + 2Gx + 2Fy + C = 0
\]
From the equation \( ax^2 + 4xy + y^2 + ax + 3y + 2 = 0 \), we identify:
- \( A = a \)
- \( H = 2 \) (since \( 2H = 4 \))
- \( B = 1 \)
- \( G = \frac{a}{2} \)
- \( F = \frac{3}{2} \)
- \( C = 2 \)
2. **Apply the Conditions for a Parabola:**
For the conic section to represent a parabola, the following conditions must hold:
- The discriminant \( \Delta \) must equal zero:
\[
\Delta = ABC + 2FGH - AF^2 - BG^2 - H^2 = 0
\]
- The condition \( H^2 = AB \) must also be satisfied.
3. **Calculate the Discriminant:**
Substitute the values of \( A, B, C, G, F, H \):
\[
\Delta = a \cdot 1 \cdot 2 + 2 \cdot \frac{3}{2} \cdot 2 - a \left(\frac{3}{2}\right)^2 - 1 \left(\frac{a}{2}\right)^2 - 2^2
\]
Simplifying this gives:
\[
\Delta = 2a + 6 - \frac{9a}{4} - \frac{a^2}{4} - 4
\]
Combine like terms:
\[
\Delta = 2a - 4 + 6 - \frac{9a}{4} - \frac{a^2}{4}
\]
\[
\Delta = 2a + 2 - 4 - \frac{9a}{4} - \frac{a^2}{4}
\]
\[
\Delta = -\frac{a^2}{4} + \left(2 - \frac{9}{4}\right)a + 2
\]
\[
\Delta = -\frac{a^2}{4} - \frac{1}{4}a + 2
\]
4. **Set the Discriminant to Zero:**
Set \( \Delta = 0 \):
\[
-\frac{a^2}{4} - \frac{1}{4}a + 2 = 0
\]
Multiply through by -4 to eliminate the fraction:
\[
a^2 + a - 8 = 0
\]
5. **Solve the Quadratic Equation:**
Use the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \):
\[
a = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-8)}}{2 \cdot 1}
\]
\[
a = \frac{-1 \pm \sqrt{1 + 32}}{2}
\]
\[
a = \frac{-1 \pm \sqrt{33}}{2}
\]
6. **Conclusion:**
The values of \( a \) that make the equation represent a parabola are:
\[
a = \frac{-1 + \sqrt{33}}{2} \quad \text{or} \quad a = \frac{-1 - \sqrt{33}}{2}
\]
Topper's Solved these Questions
THE PARABOLA
ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|2 Videos
THE PARABOLA
ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS)|2 Videos
THE HYPERBOLA
ML KHANNA|Exercise SELF ASSESSMENT TEST |4 Videos
THEORY OF QUADRATIC EQUATIONS
ML KHANNA|Exercise Self Assessment Test|27 Videos
Similar Questions
Explore conceptually related problems
If the equation lambda x^(2)+4xy+y^(2)+lambda x+3y+2=0 represent a parabola then find lambda
If the equation ax^(2) + by^(2) + (a + b - 4) xy - ax - by - 20 = 0 represents a circle , then its radius is
If ax^(2)-y^(2)+4x-y=0 represents a pair off lines then a=
If ax^2-y^2+4x-y=0 represents a pair of lines , then a is equal to
If ax^(2)+bxy+3y^(2)-5x+2y-3=0 represents a circle then a,bare
If ax^(2)+6xy+3y^(2)-10x+10y-6=0 represents a pair of perpendicular lines, then |a|=
Prove that the equation y^(2)+2Ax+2By+c=0 is represent a parabola and whose axis is parabola to x axis
The equation 3ax^2+9xy+(a^2-2)y^2=0 represents two perpendicular straight lines for
ML KHANNA-THE PARABOLA -MISCELLANEOUS EXERCISE (Assertion/ Reason)