Home
Class 12
MATHS
If ax^2 + 4xy + y^2 + ax + 3y +2=0 repre...

If `ax^2 + 4xy + y^2 + ax + 3y +2=0` represents a parabola, then a =

A

`-4`

B

`4`

C

`0`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( a \) such that the equation \( ax^2 + 4xy + y^2 + ax + 3y + 2 = 0 \) represents a parabola, we will analyze the coefficients of the general conic section equation and apply the conditions for it to be a parabola. ### Step-by-Step Solution: 1. **Identify the Coefficients:** The given equation can be compared to the general conic section equation: \[ Ax^2 + 2Hxy + By^2 + 2Gx + 2Fy + C = 0 \] From the equation \( ax^2 + 4xy + y^2 + ax + 3y + 2 = 0 \), we identify: - \( A = a \) - \( H = 2 \) (since \( 2H = 4 \)) - \( B = 1 \) - \( G = \frac{a}{2} \) - \( F = \frac{3}{2} \) - \( C = 2 \) 2. **Apply the Conditions for a Parabola:** For the conic section to represent a parabola, the following conditions must hold: - The discriminant \( \Delta \) must equal zero: \[ \Delta = ABC + 2FGH - AF^2 - BG^2 - H^2 = 0 \] - The condition \( H^2 = AB \) must also be satisfied. 3. **Calculate the Discriminant:** Substitute the values of \( A, B, C, G, F, H \): \[ \Delta = a \cdot 1 \cdot 2 + 2 \cdot \frac{3}{2} \cdot 2 - a \left(\frac{3}{2}\right)^2 - 1 \left(\frac{a}{2}\right)^2 - 2^2 \] Simplifying this gives: \[ \Delta = 2a + 6 - \frac{9a}{4} - \frac{a^2}{4} - 4 \] Combine like terms: \[ \Delta = 2a - 4 + 6 - \frac{9a}{4} - \frac{a^2}{4} \] \[ \Delta = 2a + 2 - 4 - \frac{9a}{4} - \frac{a^2}{4} \] \[ \Delta = -\frac{a^2}{4} + \left(2 - \frac{9}{4}\right)a + 2 \] \[ \Delta = -\frac{a^2}{4} - \frac{1}{4}a + 2 \] 4. **Set the Discriminant to Zero:** Set \( \Delta = 0 \): \[ -\frac{a^2}{4} - \frac{1}{4}a + 2 = 0 \] Multiply through by -4 to eliminate the fraction: \[ a^2 + a - 8 = 0 \] 5. **Solve the Quadratic Equation:** Use the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ a = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-8)}}{2 \cdot 1} \] \[ a = \frac{-1 \pm \sqrt{1 + 32}}{2} \] \[ a = \frac{-1 \pm \sqrt{33}}{2} \] 6. **Conclusion:** The values of \( a \) that make the equation represent a parabola are: \[ a = \frac{-1 + \sqrt{33}}{2} \quad \text{or} \quad a = \frac{-1 - \sqrt{33}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • THE PARABOLA

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|2 Videos
  • THE PARABOLA

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS)|2 Videos
  • THE HYPERBOLA

    ML KHANNA|Exercise SELF ASSESSMENT TEST |4 Videos
  • THEORY OF QUADRATIC EQUATIONS

    ML KHANNA|Exercise Self Assessment Test|27 Videos

Similar Questions

Explore conceptually related problems

If the equation lambda x^(2)+4xy+y^(2)+lambda x+3y+2=0 represent a parabola then find lambda

If the equation ax^(2) + by^(2) + (a + b - 4) xy - ax - by - 20 = 0 represents a circle , then its radius is

If ax^(2)-y^(2)+4x-y=0 represents a pair off lines then a=

If ax^2-y^2+4x-y=0 represents a pair of lines , then a is equal to

If ax^(2)+bxy+3y^(2)-5x+2y-3=0 represents a circle then a,bare

If ax^(2)+6xy+3y^(2)-10x+10y-6=0 represents a pair of perpendicular lines, then |a|=

Prove that the equation y^(2)+2Ax+2By+c=0 is represent a parabola and whose axis is parabola to x axis

The equation 3ax^2+9xy+(a^2-2)y^2=0 represents two perpendicular straight lines for