Home
Class 12
MATHS
If A,B,C,D be the angles of a cyclic qua...

If A,B,C,D be the angles of a cyclic quadrilateral, then
`sin A + sin B - sin C - sin D ="……….."`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \sin A + \sin B - \sin C - \sin D \) given that \( A, B, C, D \) are the angles of a cyclic quadrilateral. ### Step-by-Step Solution: 1. **Understanding the Cyclic Quadrilateral**: In a cyclic quadrilateral, the sum of the opposite angles is \( 180^\circ \). Therefore, we have: \[ A + C = 180^\circ \quad \text{and} \quad B + D = 180^\circ \] 2. **Expressing \( \sin C \)**: From the relationship \( A + C = 180^\circ \), we can express \( C \) as: \[ C = 180^\circ - A \] Using the sine identity \( \sin(180^\circ - \theta) = \sin \theta \), we find: \[ \sin C = \sin(180^\circ - A) = \sin A \] 3. **Expressing \( \sin D \)**: Similarly, from the relationship \( B + D = 180^\circ \), we can express \( D \) as: \[ D = 180^\circ - B \] Again, using the sine identity: \[ \sin D = \sin(180^\circ - B) = \sin B \] 4. **Substituting Values into the Expression**: Now we substitute \( \sin C \) and \( \sin D \) back into the original expression: \[ \sin A + \sin B - \sin C - \sin D = \sin A + \sin B - \sin A - \sin B \] 5. **Simplifying the Expression**: When we simplify the expression, we get: \[ \sin A + \sin B - \sin A - \sin B = 0 \] ### Final Answer: Thus, the value of \( \sin A + \sin B - \sin C - \sin D \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)|41 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If ABCD is a cyclic quadrilateral then find the value of sin A+sin B-sin C-sin D

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

Statement I if A,B,C,D are angles of a cyclic quadrilateral then sum sin A=0. Statement II If A, B, C, D are angles of cyclic quadrilateral then, sum cos A=0.

a sin A-b sin B=c sin(A-B)

a sin A-b sin B=c sin(A-B)

a sin A-b sin B=c sin(A-B)

If A,B,C,D be the angles of a quadrilateral , what is the value of (sin(A+B))/(sin (C+D)) +(cos(C+D))/(cos (A+B))

If A,B,C,D be the angles of a cyclic quadrilateral,taken in order, prove that: cos(180^(@)-A)+cos(180^(@)+B)+cos(180^(@)+C)-sin(90^(@)+D)=0

If A,B,C and D are the angles of cyclic quadrilateral, prove that: i) cosA + cosB+cosC+cosD ii) cos(180^(@)-A)+cos(180^(@)+B)+cos(180^(@)+C)-sin(90^(@))

Ina cyclic quadrilateral angle A + angle C = angle B + angle D = ?