Home
Class 12
MATHS
If sin x + sin y = a, cos x + cos y =b, ...

If `sin x + sin y = a, cos x + cos y =b`, then
`sin ( x+y ) ="……….."`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( \sin x + \sin y = a \) 2. \( \cos x + \cos y = b \) We need to find \( \sin(x+y) \). ### Step 1: Use the sum-to-product identities We can express \( \sin x + \sin y \) and \( \cos x + \cos y \) using the sum-to-product identities: \[ \sin x + \sin y = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] \[ \cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] From the first equation, we have: \[ a = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] From the second equation, we have: \[ b = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] ### Step 2: Divide the two equations Now, we can divide the two equations to eliminate \( \cos\left(\frac{x-y}{2}\right) \): \[ \frac{a}{b} = \frac{2 \sin\left(\frac{x+y}{2}\right)}{2 \cos\left(\frac{x+y}{2}\right)} = \tan\left(\frac{x+y}{2}\right) \] ### Step 3: Express \( \sin(x+y) \) Using the identity \( \sin(x+y) = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x+y}{2}\right) \), we can express \( \sin(x+y) \) in terms of \( a \) and \( b \): \[ \sin(x+y) = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x+y}{2}\right) \] ### Step 4: Find \( \sin(x+y) \) in terms of \( a \) and \( b \) We can express \( \sin(x+y) \) using the values of \( a \) and \( b \): 1. From \( a = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \), we can express \( \sin\left(\frac{x+y}{2}\right) \) as: \[ \sin\left(\frac{x+y}{2}\right) = \frac{a}{2 \cos\left(\frac{x-y}{2}\right)} \] 2. From \( b = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \), we can express \( \cos\left(\frac{x+y}{2}\right) \) as: \[ \cos\left(\frac{x+y}{2}\right) = \frac{b}{2 \cos\left(\frac{x-y}{2}\right)} \] Now substituting these into the sine formula: \[ \sin(x+y) = 2 \left(\frac{a}{2 \cos\left(\frac{x-y}{2}\right)}\right) \left(\frac{b}{2 \cos\left(\frac{x-y}{2}\right)}\right) \] \[ = \frac{ab}{\cos^2\left(\frac{x-y}{2}\right)} \] ### Step 5: Use \( \cos^2\left(\frac{x-y}{2}\right) \) From the identity \( \cos^2\left(\frac{x-y}{2}\right) = \frac{1 + \cos(x-y)}{2} \), we can express \( \sin(x+y) \) as: \[ \sin(x+y) = \frac{2ab}{a^2 + b^2} \] ### Final Result Thus, we conclude that: \[ \sin(x+y) = \frac{2ab}{a^2 + b^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)|41 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If sin x+sin y=a and cos x+cos y=b then thevalue of sin(x+y) is

If sin x + sin y = a and cos x + cos y = b then tan ((x + y) / (2)) is

If sin x + sin y = a, cos x + cos y = b, then what is the value of cos (x-y) ?

If sin x + sin y = a , cos x - cos y = b then the value of tan ((y-x)/2) is _______ in terms of a and b.

If sin x + sin y = a and cos x + cos y = b , what is sin x.sin y + cos x .cos y equal to ?

If (sin x) (sin y) = 1, then (cos x) (cos y) =?

If sin x + sin y = sqrt (3) (cos y-cos x), then sin3x + sin3y =