Home
Class 12
MATHS
If alpha and beta are the solutions of a...

If `alpha` and `beta` are the solutions of a `cos theta + b sin theta =c`, then
`sin alpha sin beta ="………….."`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin \alpha \sin \beta \) where \( \alpha \) and \( \beta \) are the solutions of the equation \( a \cos \theta + b \sin \theta = c \), we can follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ a \cos \theta + b \sin \theta = c \] Rearranging gives: \[ a \cos \theta = c - b \sin \theta \] ### Step 2: Square both sides Square both sides of the equation: \[ (a \cos \theta)^2 = (c - b \sin \theta)^2 \] This results in: \[ a^2 \cos^2 \theta = c^2 - 2bc \sin \theta + b^2 \sin^2 \theta \] ### Step 3: Substitute \( \cos^2 \theta \) Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \), substitute into the equation: \[ a^2 (1 - \sin^2 \theta) = c^2 - 2bc \sin \theta + b^2 \sin^2 \theta \] Expanding this gives: \[ a^2 - a^2 \sin^2 \theta = c^2 - 2bc \sin \theta + b^2 \sin^2 \theta \] ### Step 4: Rearranging the equation Rearranging the equation leads to: \[ a^2 - c^2 = (b^2 + a^2) \sin^2 \theta - 2bc \sin \theta \] ### Step 5: Form a quadratic equation This can be rearranged into a standard quadratic form: \[ (b^2 + a^2) \sin^2 \theta - 2bc \sin \theta + (c^2 - a^2) = 0 \] ### Step 6: Use the product of roots For a quadratic equation \( Ax^2 + Bx + C = 0 \), the product of the roots \( r_1 \) and \( r_2 \) is given by \( \frac{C}{A} \). Here, \( A = b^2 + a^2 \), \( B = -2bc \), and \( C = c^2 - a^2 \). Thus, the product of the roots \( \sin \alpha \sin \beta \) is: \[ \sin \alpha \sin \beta = \frac{c^2 - a^2}{b^2 + a^2} \] ### Final Result Therefore, the value of \( \sin \alpha \sin \beta \) is: \[ \sin \alpha \sin \beta = \frac{c^2 - a^2}{a^2 + b^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)|41 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the solution of a cos theta + b sin theta = c , then

If alpha and beta are the solutions of a cos theta+b sin theta=c, show that sin alpha+sin beta=(2bc)/(a^(2)+b^(2)) and sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))

If alpha, beta are solutin of 6 cos theta + 8 sin theta=9, then sin (alpha + beta)=

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha and beta are the solution of the equation a cos2 theta+b sin2 theta=c then cos^(2)alpha+cos^(2)beta is equal to

If alpha and beta are the solutions roots of a cos theta+b sin theta=c, then choose the correct option (A)sin alpha+sin beta=(2bc)/(a^(2)+b^(2))(B)sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))(C)sin alpha+sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)sin alpha sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)

If alpha,beta are roots of a cos theta+b sin theta=c then value of sin alpha+sin beta&sin alpha sin beta is