Home
Class 12
MATHS
If alpha and beta are the solutions of a...

If `alpha` and `beta` are the solutions of a `cos theta + b sin theta =c`, then
`cos alpha +cos beta ="……………"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( \cos \alpha + \cos \beta \) given that \( \alpha \) and \( \beta \) are the solutions of the equation \( a \cos \theta + b \sin \theta = c \). ### Step-by-Step Solution: 1. **Rearranging the Equation:** Start with the given equation: \[ a \cos \theta + b \sin \theta = c \] Rearranging gives: \[ c - a \cos \theta = b \sin \theta \] 2. **Squaring Both Sides:** Square both sides to eliminate the sine and cosine terms: \[ (c - a \cos \theta)^2 = (b \sin \theta)^2 \] 3. **Expanding Both Sides:** Expanding the left side using the formula \( (x - y)^2 = x^2 - 2xy + y^2 \): \[ c^2 - 2ac \cos \theta + a^2 \cos^2 \theta = b^2 \sin^2 \theta \] 4. **Substituting \( \sin^2 \theta \):** Replace \( \sin^2 \theta \) with \( 1 - \cos^2 \theta \): \[ c^2 - 2ac \cos \theta + a^2 \cos^2 \theta = b^2 (1 - \cos^2 \theta) \] 5. **Rearranging the Equation:** This simplifies to: \[ c^2 - 2ac \cos \theta + (a^2 + b^2) \cos^2 \theta - b^2 = 0 \] Rearranging gives: \[ (a^2 + b^2) \cos^2 \theta - 2ac \cos \theta + (c^2 - b^2) = 0 \] 6. **Identifying the Quadratic Form:** This is a quadratic equation in terms of \( \cos \theta \): \[ A \cos^2 \theta + B \cos \theta + C = 0 \] where \( A = a^2 + b^2 \), \( B = -2ac \), and \( C = c^2 - b^2 \). 7. **Using the Sum of Roots Formula:** The sum of the roots of a quadratic equation \( Ax^2 + Bx + C = 0 \) is given by: \[ \cos \alpha + \cos \beta = -\frac{B}{A} \] Substituting the values of \( A \) and \( B \): \[ \cos \alpha + \cos \beta = -\left(-\frac{2ac}{a^2 + b^2}\right) = \frac{2ac}{a^2 + b^2} \] ### Final Result: Thus, we have: \[ \cos \alpha + \cos \beta = \frac{2ac}{a^2 + b^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)|41 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the solution of a cos theta + b sin theta = c , then

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are the solutions of a cos theta+b sin theta=c, then show that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))( ii) cos(alpha-beta)=(2c^(2)-(a^(2)+b^(2)))/(a^(2)+b^(2))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that cos alpha + cos beta = (2ac)/(a^(2)+ b^(2))

If alpha and beta are the solution of the equation a cos2 theta+b sin2 theta=c then cos^(2)alpha+cos^(2)beta is equal to

If alpha, beta are solutin of 6 cos theta + 8 sin theta=9, then sin (alpha + beta)=

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).