Home
Class 12
MATHS
If alpha and beta are the solutions of a...

If `alpha` and `beta` are the solutions of a `cos theta + b sin theta =c`, then
`cos alpha cos beta ="…………."`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos \alpha \cos \beta \) where \( \alpha \) and \( \beta \) are the solutions of the equation \( a \cos \theta + b \sin \theta = c \), we can follow these steps: ### Step 1: Rearranging the Equation Start with the given equation: \[ a \cos \theta + b \sin \theta = c \] Rearranging gives: \[ c - a \cos \theta = b \sin \theta \] ### Step 2: Squaring Both Sides Square both sides of the equation: \[ (c - a \cos \theta)^2 = (b \sin \theta)^2 \] ### Step 3: Expanding Both Sides Expanding both sides results in: \[ c^2 - 2ac \cos \theta + a^2 \cos^2 \theta = b^2 \sin^2 \theta \] ### Step 4: Substituting \( \sin^2 \theta \) Use the identity \( \sin^2 \theta = 1 - \cos^2 \theta \): \[ c^2 - 2ac \cos \theta + a^2 \cos^2 \theta = b^2 (1 - \cos^2 \theta) \] ### Step 5: Rearranging the Equation Rearranging gives: \[ c^2 - 2ac \cos \theta + a^2 \cos^2 \theta = b^2 - b^2 \cos^2 \theta \] Combine like terms: \[ (a^2 + b^2) \cos^2 \theta - 2ac \cos \theta + (c^2 - b^2) = 0 \] ### Step 6: Identifying Coefficients This is a quadratic equation in terms of \( \cos \theta \): \[ A \cos^2 \theta + B \cos \theta + C = 0 \] Where: - \( A = a^2 + b^2 \) - \( B = -2ac \) - \( C = c^2 - b^2 \) ### Step 7: Product of Roots The product of the roots \( \cos \alpha \cos \beta \) for a quadratic equation \( Ax^2 + Bx + C = 0 \) is given by: \[ \cos \alpha \cos \beta = \frac{C}{A} \] ### Step 8: Substituting Values Substituting the values of \( C \) and \( A \): \[ \cos \alpha \cos \beta = \frac{c^2 - b^2}{a^2 + b^2} \] ### Final Answer Thus, the value of \( \cos \alpha \cos \beta \) is: \[ \cos \alpha \cos \beta = \frac{c^2 - b^2}{a^2 + b^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (5) ( MULTIPLE CHOICE QUESTIONS)|26 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (6) ( MULTIPLE CHOICE QUESTIONS)|41 Videos
  • TRIGONOMETRY RATIOS AND IDENTITIES

    ML KHANNA|Exercise PROBLEM SET (4) TRUE AND FALSE|5 Videos
  • TRIGONOMETRICAL EQUATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |27 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the solution of a cos theta + b sin theta = c , then

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are the solutions of a cos theta+b sin theta=c, then show that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))( ii) cos(alpha-beta)=(2c^(2)-(a^(2)+b^(2)))/(a^(2)+b^(2))

If alpha and beta are the solution of the equation a cos2 theta+b sin2 theta=c then cos^(2)alpha+cos^(2)beta is equal to

If alpha, beta are solutin of 6 cos theta + 8 sin theta=9, then sin (alpha + beta)=

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that cos alpha + cos beta = (2ac)/(a^(2)+ b^(2))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).