Home
Class 12
MATHS
lim(theta to pi//2) (1- sin theta)/(pi-2...

`lim_(theta to pi//2) (1- sin theta)/(pi-2theta)^(2) = 1/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin \theta}{(\pi - 2\theta)^2} \), we will follow these steps: ### Step 1: Identify the limit We start by substituting \( \theta = \frac{\pi}{2} \) into the expression: \[ \lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin \theta}{(\pi - 2\theta)^2} \] Calculating the numerator: \[ 1 - \sin\left(\frac{\pi}{2}\right) = 1 - 1 = 0 \] Calculating the denominator: \[ (\pi - 2\cdot\frac{\pi}{2})^2 = (\pi - \pi)^2 = 0^2 = 0 \] Since both the numerator and denominator approach 0, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} \) results in \( \frac{0}{0} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] Here, let \( f(\theta) = 1 - \sin \theta \) and \( g(\theta) = (\pi - 2\theta)^2 \). ### Step 3: Differentiate the numerator and denominator Now we compute the derivatives: 1. Derivative of the numerator \( f(\theta) = 1 - \sin \theta \): \[ f'(\theta) = -\cos \theta \] 2. Derivative of the denominator \( g(\theta) = (\pi - 2\theta)^2 \): Using the chain rule: \[ g'(\theta) = 2(\pi - 2\theta)(-2) = -4(\pi - 2\theta) \] ### Step 4: Rewrite the limit using the derivatives Now we can rewrite the limit using these derivatives: \[ L = \lim_{\theta \to \frac{\pi}{2}} \frac{-\cos \theta}{-4(\pi - 2\theta)} = \lim_{\theta \to \frac{\pi}{2}} \frac{\cos \theta}{4(\pi - 2\theta)} \] ### Step 5: Substitute again Substituting \( \theta = \frac{\pi}{2} \): The numerator becomes: \[ \cos\left(\frac{\pi}{2}\right) = 0 \] The denominator becomes: \[ 4(\pi - 2\cdot\frac{\pi}{2}) = 4(\pi - \pi) = 0 \] Again, we have the indeterminate form \( \frac{0}{0} \). We apply L'Hôpital's Rule again. ### Step 6: Differentiate again 1. Derivative of the numerator \( \cos \theta \): \[ -\sin \theta \] 2. Derivative of the denominator \( 4(\pi - 2\theta) \): \[ -8 \] ### Step 7: Rewrite the limit again Now we rewrite the limit: \[ L = \lim_{\theta \to \frac{\pi}{2}} \frac{-\sin \theta}{-8} = \lim_{\theta \to \frac{\pi}{2}} \frac{\sin \theta}{8} \] ### Step 8: Substitute the limit Substituting \( \theta = \frac{\pi}{2} \): \[ L = \frac{\sin\left(\frac{\pi}{2}\right)}{8} = \frac{1}{8} \] ### Conclusion Thus, we have shown that: \[ \lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin \theta}{(\pi - 2\theta)^2} = \frac{1}{8} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS) |133 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

Prove that lim_(theta rarr(pi)/(2))(2cos theta)/(pi-2 theta)=1

lim_(theta rarr pi/2)(sec theta-tan theta)/(pi-2 theta)

lim_(theta rarr(pi)/(2))(sec theta-tan theta)/(pi-2 theta)

lim_(theta to (pi)/(2)) ((pi)/(2)-theta)/(cot theta) is equal to

lim_(theta rarr(pi)/(4))(1-tan theta)/(1-sqrt(2)sin theta)

lim_(x rarr(pi)/(2))(1-sin theta)/(((pi)/(2)-theta)cos theta)=

Statement 1 lim_(xtopi//2)(sin(cot^(2)x))/((pi-2x)^(2))=1/2 Statement 2: lim_(theta to 0)(sin theta)/(theta)=1 and lim_(theta to 0)(tan theta)/(theta)=1 , where theta is measured in radians.

Putting x = theta- (pi) / (4) prove that lim_ (theta rarr (pi) / (4)) (sin theta-cos theta) / (theta- (pi) / (4)) = sqrt (2)