Home
Class 12
MATHS
lim(theta to pi//2) ((1- sin^(3) theta)/...

`lim_(theta to pi//2) ((1- sin^(3) theta)/(cos^(2)theta)) =1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin^3 \theta}{\cos^2 \theta} \), we will follow these steps: ### Step 1: Identify the limit form As \( \theta \) approaches \( \frac{\pi}{2} \), we notice that: - \( \sin \theta \) approaches \( 1 \) - \( \cos \theta \) approaches \( 0 \) Thus, \( \cos^2 \theta \) approaches \( 0 \) and \( 1 - \sin^3 \theta \) approaches \( 1 - 1 = 0 \). This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Factor the numerator We can factor the numerator \( 1 - \sin^3 \theta \) using the identity for the difference of cubes: \[ 1 - \sin^3 \theta = (1 - \sin \theta)(1 + \sin \theta + \sin^2 \theta) \] ### Step 3: Rewrite the limit Substituting the factorization into the limit, we have: \[ \lim_{\theta \to \frac{\pi}{2}} \frac{(1 - \sin \theta)(1 + \sin \theta + \sin^2 \theta)}{\cos^2 \theta} \] ### Step 4: Use the identity for \( \cos^2 \theta \) We know that: \[ \cos^2 \theta = 1 - \sin^2 \theta = (1 - \sin \theta)(1 + \sin \theta) \] Thus, we can rewrite the limit as: \[ \lim_{\theta \to \frac{\pi}{2}} \frac{(1 - \sin \theta)(1 + \sin \theta + \sin^2 \theta)}{(1 - \sin \theta)(1 + \sin \theta)} \] ### Step 5: Cancel common factors Provided \( \sin \theta \neq 1 \) (which is valid as we approach but do not reach \( \frac{\pi}{2} \)), we can cancel \( (1 - \sin \theta) \): \[ \lim_{\theta \to \frac{\pi}{2}} \frac{1 + \sin \theta + \sin^2 \theta}{1 + \sin \theta} \] ### Step 6: Substitute the limit Now, substituting \( \theta = \frac{\pi}{2} \): - \( \sin \frac{\pi}{2} = 1 \) Thus, we have: \[ \frac{1 + 1 + 1^2}{1 + 1} = \frac{3}{2} \] ### Conclusion The limit evaluates to: \[ \lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin^3 \theta}{\cos^2 \theta} = \frac{3}{2} \] ### Final Answer The statement in the question that the limit equals \( \frac{1}{2} \) is false; the correct limit is \( \frac{3}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS) |133 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(theta rarr(pi)/(4))(1-tan theta)/(1-sqrt(2)sin theta)

Tha value of the limit lim_(theta to 0) (tan(pi cos^(2)theta))/(sin (2pi sin^(2)theta)) is equal to :

Prove the following identity: ((1)/(sec^(2)theta-cos^(2)theta)+(1)/(cos ec^(2)theta-sin^(2)theta))sin^(2)theta cos^(2)theta=(1-sin^(2)theta cos^(2)theta)/(2+sin^(2)cos^(2)theta)

lim_(theta rarr(pi)/(6))(4cos^(2)theta-3)/(2sin theta-1)

lim_(theta rarr0)(1-cos theta)/(sin^(2)2 theta)

lim_(x rarr(pi)/(2))(1-sin theta)/(((pi)/(2)-theta)cos theta)=

lim_(theta rarr pi)((sqrt(2)-cos theta-sin theta)/((4 theta-pi)^(2))

2 cos (theta - pi //2) + 3 sin (theta + pi//2) - (3sin theta + 2 cos theta ) = ? A. cos theta - sin theta B. sin theta - cos theta C. sin theta + cos theta D. cot theta - tan theta .

Putting x = theta- (pi) / (4) prove that lim_ (theta rarr (pi) / (4)) (sin theta-cos theta) / (theta- (pi) / (4)) = sqrt (2)